
T E C H N I C A L R E P O RT S I N C O M P U T E R S C I E N C E

Technische Universität Dortmund

R2G: Supporting POSIX like semantics in a distributed RTEMS system

Andreas Heinig

Computer Science 12 – Design Automation of Embedded Systems Group

Number: 836

December 2010

Technische Universität Dortmund — Fakultät für Informatik
Otto-Hahn-Str. 14, 44227 Dortmund



http://ls12-www.cs.tu-dortmund.de

http://www.andreasheinig.de/permalink/10121

Andreas Heinig: R2G: Supporting POSIX like semantics in a distributed RTEMS sys-
tem, Technical Report, Department of Computer Science, Dortmund University
of Technology. © December 2010

http://ls12-www.cs.tu-dortmund.de
http://www.andreasheinig.de/permalink/10121


A B S T R A C T

R²G (speak: R square G) is an extension to the open source RTEMS real-time
operating system. The purpose of R²G is to remove the limitations of RTEMS in
the context of multi-threaded applications and to support IMEC’s RTLib, which
implements the parallelization of the MNEMEE Tool Flow.

R²G establishes the connection between several tools. The parallelized source
code produced either by MPMH (IMEC) or by the MNEMME Tool Flow
(MPMH + ICD-C + TGE) can now be executed on several simulators includ-
ing MPARM and CoMET. Due to the high simulation speed of CoMET, large
benchmark applications can be executed. We implemented two new CoMET
based platforms with a flat respectively hierarchical memory layout. On the hi-
erarchical platform, memory optimization and mapping tools can fully exploit
their optimizations.

A C K N O W L E D G M E N T S

This work was fully supported by the Artist Design Network of Excellence EU
FP7 Grant No. 39316.

iii



iv



C O N T E N T S

1 Introduction 1

2 Platforms 3

2.1 MPARM 3

2.2 CoMET 4

2.2.1 About CoMET 4

2.2.2 Platform 5

3 RTEMS 9

3.1 RTEMS Architecture 9

3.2 BSP - Board Support Package 10

3.3 What we have achieved so far (and what not) 10

4 R²G 12

4.1 Overview 12

4.2 Remote Thread Spawning 12

4.3 Synchronization 14

4.4 RTLib Porting 14

5 Conclusion 16

a Appendix: R²G API 17

a.1 Thread Subsystem 17

a.1.1 Thread Operations 17

a.1.2 Thread Attributes 24

a.1.3 Thread Specific Keys 29

a.2 Memory Subsystem 32

a.2.1 Dynamic Shared Memory Allocation 32

a.2.2 DMA Transfer Engine 33

a.3 Synchronization Primitives 35

a.3.1 Semaphore 35

a.3.2 Mutex 39

a.3.3 Condition Variable 44

a.3.4 Barrier 49

a.4 Board specific R²G support routines 50

a.4.1 System Support 50

a.4.2 Basic Synchronization 51

a.4.3 Performance Measurement 52

v



vi contents



1
I N T R O D U C T I O N

In the last decades multi-core systems were not widely used in the embed-
ded systems community. In contrast to high performance computing, where a
very long history of parallel computing exists, most embedded applications are
written sequentially.

However, there is a continuing demand for higher performance of informa-
tion processing. Due to limitations of increasing clock frequencies further, this
growing demand stimulates using of parallelism including multiple processors
in the embedded world, too. Thus, one of the designers tasks is to provide par-
allelized code of the application. Parallelizing a sequential application or even
writing a parallel application from scratch is not a trivial task. Explicit syn-
chronization has to be added to avoid hazards which will occur when multiple
processes access the same data concurrently.

Furthermore, hardware platforms, containing connected processors, are becom-
ing increasingly parallel. This trend also affects the design of embedded sys-
tems. Actually, there are various kinds of connectivity. In multi-processors in a
system on a chip (MPSoC), processors are tightly connected and communica-
tion is fast. In other cases, networked processors may be less tightly connected
and communication may be slower. Hence, the another task for a designer will
be to address the issues resulting from the use of multiple processors, in partic-
ular in the form of multiple heterogeneous processors on a chip, also containing
memory hierarchies. The designer has to map the parallelized application onto
the platform while respecting the memory hierarchy. In some cases, not every
memory is accessible from each processor. Usually, the outermost memories,
like DRAM cells, are shared between all processing units, but they are slow;
whereas, the innermost memories, like SRAM used as scratch pad, are only
exclusively usable by one processor, but they are very fast. Hence, the designer
has not only to map the application onto a processor but also to map the data
onto the right location to get the maximum performance.

If we consider complex embedded applications which process multimedia and
communication workloads, it will be increasingly impossible for designers to
map those applications cost-efficiently to any platform, without significant opti-
mization of the initial source code. At this point the MNEMEE[1] project comes
into play. MNEMEE addresses those key challenges by introducing an innova-
tive tool flow which optimizes the application on the source code level. Most
of the tools are running fully automatically. In various publications [2][3][4][5]
the authors have shown large amounts of speedup improvements, memory
footprint reductions, and energy savings.

In this work – supported by ArtistDesign[6] – we will concentrate on the un-
derlying hardware platform and operating system software which were used
in the MNEMEE tool flow, too.

1



2 introduction

The big challenge was to provide a POSIX like API which is functional across
processor boundaries and within a hierarchical memory layout. In this way, the
library (namely RTLib[7]) which implements the parallelization, synchroniza-
tion and communication can interact with the platform in the same way as on
a normal host platform (running Linux for example).

The MNEMEE project benefits very much from this work. It enables the possi-
bility to measure the results obtained by the individual tools on an embedded
platform. Previously, only high level simulations and tests based on the host
platform were used.

To test the functionality of our solution, a H.264 encoder application is used.
H.264 is a very compute intensive video compression algorithm. A parallelized
version of H.264 requires much communication between the several threads.
Hence, it is the ideal test case for our system.

This report is organized as follows: In chapter 2 the platforms are depicted. In
chapter 3 and chapter 4 we go bottom-up through the software stack. Chapter
5 concludes this report. Finally, in Appendix A the R²G API is shown in detail.



2
P L AT F O R M S

In this work we will concentrate on simulator based platforms. Simulation has
the advantage that no hardware is needed and that we can exchange compo-
nents very easily. Another important point is that we can precisely measure
the clock cycles and cache behavior of the applications. Furthermore, energy
models included in the simulators can be used to compare the optimizations
regarding energy efficiency.

The drawback of simulation is the typically slow speed compared with real
hardware. Especially for the MPARM[8] simulator this let to huge problems.
Here we have to interrupt the execution of our MPEG4 encoding benchmark
after three days. Hence, we used a second simulator called CoMET[9] which
simulates the benchmark within a half day.

Both simulators and platforms are described in the next two sections.

2.1 mparm

P
O

W
E

R
E

D

ARM

ARM7m

SRAM

4 KB

Cache

4 KB

200 MHz

P
O

W
E

R
E

D

ARM

ARM7m

SRAM

4 KB

Cache

4 KB

200 MHz

P
O

W
E

R
E

D

ARM

ARM7m

SRAM

4 KB

Cache

4 KB

200 MHz

P
O

W
E

R
E

D

ARM

ARM7m

SRAM

4 KB

Cache

4 KB

Private DRAM

12 MB

Private DRAM

12 MB

Private DRAM

12 MB

Private DRAM

12 MB

Shared DRAM

16 MB

200 MHz

Figure 1: MPARM Platform

MPARM[8] was developed at the University of Bologna. It is a multi-processor
cycle accurate architectural simulator. Several SWARM[10] (SoftWare ARM)
processor cores implemented in C++ are connected by an AMBA bus imple-
mented in System C. The SWARM cores simulate the ARM7m processor.

SRAM based memory and caches are connected with the ARM core through
an internal bus. The SRAM is typically used as a scratch pad. If enabled, the
cache would store accesses to the private memory which is attached to a shared
AMBA like interconnect.

3



4 platforms

Except for the size of the shared memory, we used the default configuration of
the simulator. We had to increase the amount of shared memory form 1 MB to
16 MB to enable storage of the frame buffers of our benchmark application. The
processors are simulated with the default frequency of 200 MHz. A detailed
view is depicted in Figure 1.

With this setup we were very successful in simulating smaller applications.
However, the simulation speed of MPARM is very low. Hence, larger applica-
tions are not running very well on MPARM. We searched for an alternative
solution and found the CoMET simulator of Synopsys, which is already used
at our facility to simulate TriCore[11] based systems. CoMET is described in
the next subsection.

2.2 comet

Figure 2: CoMET GUI Embedded in Eclipse

2.2.1 About CoMET

CoMET[9] is a system engineering tool that enables the creation of a software
simulation-based VSP (virtual system prototype) of an embedded system or a
system-on-a-chip. CoMET is used to design, simulate, analyze, and optimize
complex embedded systems and to quantitatively evaluate performance while
running real software applications. The VSP simulation is fast enough to enable



2.2 comet 5

architects to evaluate real software loads, including real-time operating systems,
protocol stacks and large software libraries.

CoMET has a high degree of timing accuracy so that the virtual embedded
system simulation reflects the actual behavior of even the most demanding
real-time systems. Due to fast and accurate cycle simulation, device drivers
and other code are enabled to run interacting with the hardware in a normal
way. Parameters such as cache size can also be evaluated and optimized, which
is impossible in a less accurate environment where cache hits and misses are
not modeled precisely.

2.2.2 Platform

CoMET supports different virtual processor models (VPM) ranging from micro-
controllers (e.g. NEC V850) up to general purpose CPUs (e.g. ARM 7 / 926 /
11). Also other components typically used in real-world systems are supported,
for example: clocks, timers, DMA controllers, general purpose memory, etc. .

Due to CoMET’s modular design, any of those modules can be connected with
each other. Therefore, CoMET provides primitives like simple wires with the
typical logic model as known by VHDL up to complete bus models like AMBA,
PCI or PLB. To select and connect the components, a system architect can model
the VSP within a GUI embedded in the Eclipse[12] framework (see Figure 2).
To start simulation the GUI is not necessary anymore.

The two platforms described in the next subsections use the following compo-
nents:

• Processor: ARM1176

Figure 3: ARM 1176 CPU Block Diagram [13]



6 platforms

Figure 3 shows the ARM 1176 processor. The processor uses the Harvard
architecture. Thus, we have separate caches for instruction and data. Each
cache stores 16 kB. Beside the caches, the processor has Tightly Coupled
Memories (TCM) which can be used as scratch pads. One TCM RAM is
8 kB large. Last but not least, the AMBA AXI Interface is used for off-chip
connection.

We made very good experiences when using the ARM architecture
within MPARM. Thus, we took the decision to use ARM for the CoMET
based platforms, too.

• Memories:

The platform contains several memories:

– Private Memory

Every processor has a dedicated memory or reserved memory part
for its exclusive usage. The data and code segments are mapped
to this memory. The heap and non-shared operating system data
reside here, too.

The private memory is the only memory which is cached when
caches are enabled.

– Shared Memory

The shared memory is under complete application control.

– L2 Scratch Pad

Shared data of the operating system and system libraries are
mapped to the L2 scratch pad memory. Applications can use this
memory with special linker script adaptations or by dynamic allo-
cations with the function r2g_mem_alloc().

– Boot ROM / Flash

With this memory we simulate a boot medium which might be a
ROM or a flash. Every processor will start execution on the base
address of this memory and loads a special boot loader. The loader
extracts the executable from the boot image and initially sets the
processor up. For the creation of this boot image we provide the
tool mkbootrom which generates the image of the ELF files for each
processor.

• Peripherals:

Every processor has dedicated peripheral units. The only exception is the
External Interrupt Controller which is shared between all processors:

– UART

CoMET provides a module for a serial interface. All outputs of the
C-Library are redirected to the UART.

– DMA Controller



2.2 comet 7

Each processor has a DMA controller to copy large amounts of data.
The data has to be addressable by the processor. Hence, data resid-
ing in the private memory of another processor is not accessible.

– Timer Controller

The time base is maintained through this timer chip.

– Clock Controllers

We used many clock controllers to clock most of all components.

– Interrupt Controller

ARM processors only have one external interrupt, called exception.
To support multiple interrupt sources an extra chip is needed. This
chip multiplexes the incoming interrupt wires.

– Processor ID ROM

The Processor ID ROM was developed at TU Dortmund.

In a multiprocessor system we need an unique identifier for each
CPU. This device provides an arbitrary constant number.

– External Interrupt Controller

The External Interrupt Controller was developed at TU Dortmund.

Every processor can send interrupts to other processors. This is im-
portant for the operating system to signal that new data has arrived
in the shared data structures. If there were no interrupts, polling
would be necessary. However, according to our measurements, the
polling mode reduces the overall performance at least by a factor of
two.

In the next two subsections the connection between the processors and the
memories are depicted.

2.2.2.1 ARM1176 – Flat Memory Model

Memory Controller Memory Controller

P
O

W
E

R
E

D

ARM

ARM1176

P
O

W
E

R
E

D

ARM

ARM1176

P
O

W
E

R
E

D

ARM

ARM1176

P
O

W
E

R
E

D

ARM

ARM1176

Boot ROM

8 MB

L2 Scratch

1 MB

Shared DRAM

512 MB

Private DRAM

4 x 16 MB

500 MHz 500 MHz 500 MHz 500 MHz

125 MHz

Figure 4: Flat Platform



8 platforms

Figure 4 shows the flat platform. We used four ARM1176 processors. One bus
connects all processors and memories. The partitioning of the private memory
is done in software. Here, the page table entries block any access to a foreign
region. The private memory and the shared memory are two separate modules.
With this design we can maintain identical memory mappings for the flat as
well as the hierarchical platform. Indeed, which platform is used, is completely
transparent for the whole software stack. Hence, we can use both platforms
with exactly the same software environment.

2.2.2.2 ARM1176 – Hierarchical Memory Model

Memory Controller

P
O

W
E

R
E

D

ARM

ARM1176

Private DRAM

16 MB

Bridge

500 MHz

P
O

W
E

R
E

D

ARM

ARM1176

Private DRAM

16 MB

Bridge

500 MHz

P
O

W
E

R
E

D

ARM

ARM1176

Private DRAM

16 MB

Bridge

500 MHz

L2 Scratch

1 MB

Boot ROM

8 MB

Shared DRAM

512 MB

P
O

W
E

R
E

D

ARM

ARM1176

Private DRAM

16 MB

Bridge

500 MHz

125 MHz

250 MHz

Figure 5: Hierarchical Platform

Figure 5 shows the hierarchical platform. In contrast to the flat platform, every
processor has now its own dedicated memory which is connected through an
internal bus. This setup lowers the bus contention dramatically.

The hierarchical platform is not directly comparable to an industrial platform.
However, many components of this platform can be found in other systems, as
well. The Cell Broadband Engine Architecture (CellBE)[14], for example, is also
equipped with local on-chip memories. The main purpose of providing such
a more or less scientific platform is to show, that it may be beneficial to deal
with such hierarchical systems in the future, if powerful memory optimization
approaches are available in upcoming compilers.



3
RT E M S

At the beginning of our work we used the MPARM simulator as our platform.
We have chosen RTEMS as operating system, because it was the only operating
system that was already ported to MPARM. However, in the later progress we
developed our own RTEMS port, because the one provided by the University of
Bologna only supports RTEMS 4.6. The software developed within this project
is based on RTEMS 4.10.

The Real-Time Executive for Multiprocessor Systems or RTEMS is a full fea-
tured real-time operating system. It supports a variety of open API and inter-
face standards including POSIX-1003.1b.

3.1 rtems architecture

In figure 6 the RTEMS architecture is depicted. Most parts are completely inde-
pendent regarding the used processor and platform.

Hardware

Board Support Package

LibCPU LibChip

uTRION API
Performance

Monitoring API

POSIX Compliant
Filesystem

Ada95GUIsBSD TCP/IP Stack Add−on Libraries

SAPI Classic API POSIX Threads

Super Core

Super Core CPU

Figure 6: RTEMS Architecture

The adaptation for specific platform is realized within four components:

• Super Core CPU

The major tasks of this component are to implement context switches
and low level interrupt handling.

• LibCPU

For some CPUs cache and MMU management are implemented here.

• LibCHIP

9



10 rtems

LibCHIP contains drivers for some network, timer, and serial controllers.

• Board Support Package

The Board Support Package (BSP) provides an abstraction of the cur-
rently used platform. Therefore, LibCPU and LibCHIP can be used for
already implemented components.

BSPs provide the following functionality:

– Booting until the RTEMS entry routine

– Setup and handle interrupts

– Initialize timers

– Provide shared memory and shared locking mechanisms for the
multi processor communication

– Initialize other hardware components such as the UART controller
for example

3.2 bsp - board support package

We have developed BSP’s for the MPARM based as well as the CoMET based
platforms. In addition to the tasks described above, we added extra functional-
ity called ”R²G Support” (cf. A.4 on page 50). The most important feature here,
is the spinlock based synchronization primitive which works across processor
boundaries. In difference to other BSP’s this primitive can also be used by the
upper software layers and not only by the RTEMS multi processor controller.

Another important feature is the implementation of different hooks for the
application. The ”init_mem” hook for example can be used to initialize addi-
tional memories like the scratch pads or the shared memory. Especially on the
CoMET platforms, it is not possible to initialize the scratch pads during boot-
up, because they have to be explicitly mapped by the BSP into the address
space before usage. Hence, the boot loader cannot directly load the contents
from the ELF file into the scratch pad.

3.3 what we have achieved so far (and what not)

At this point let us summarize the last two chapters; For the simulation of
our software two platforms have been made available. The platforms are fully
supported by RTEMS even in multiprocessor mode. And, last but not least, a
POSIX interface is provided by RTEMS.

Now, everything seems to be ready: We can take an application and paral-
lelize it on the source code level with the tools[2][15][7] provided by ICD
Dortmund[16] and IMEC[17]. Thereafter, we can use IMEC’s POSIX based Run-
Time Library (RTLib[7]) which implements the parallelization. And finally we
should be able to simulate this parallelized application on either MPARM or
CoMET.



3.3 what we have achieved so far (and what not) 11

However, there is a huge limitation which prevents the successful simulation;
The POSIX implementation of RTEMS is only working on a per-processor basis.
This means we cannot spawn threads on an remote processor and we cannot
synchronize with an remotely running thread.

To bridge this gap R²G was developed which is described in the remainder of
this report.



4
R ² G

R²G is the acronym for ”RTEMS and RTLib Glued together”. The goal of R²G
is to eliminate the limitations of RTEMS in order to execute auto-parallelized
code which uses IMEC’s RTLib.

4.1 overview

In figure 7 a system overview is given:

Figure 7: System overview

On the Application Level we can find the application which uses a special ver-
sion of RTLib. This RTLib version does not use the pthread interface anymore.
Instead R²G is used for synchronization and thread management.

Inside the OS/System Level the RTEMS OS, C Library (in our case ”newlib”),
and R²G can be found. R²G can only be used with special RTEMS BSPs which
support R²G extensions (see 3.2 on page 10 and A.4 on page 50).

In the next section it will be shown why R²G is necessary.

4.2 remote thread spawning

In our research we use normal single threaded applications which should be
(semi-) auto-parallelized and optimized using tools provided by MNEMEE[1].
For the parallelization of the application the MPMH-Tool includes a function
call to configComponent() inside the main() routine of the application. The

12



4.2 remote thread spawning 13

configComponent() function spawns all the threads and initializes the commu-
nication primitives, e.g. FIFOs.

If we would now use the pthread interface, all functions would spawn on the
same processor. To avoid this, R²G extends the r2g_thread_create() function (cf.
A.1.1.6 on page 19) with an additional parameter which specifies the target CPU
for thread creation. For the mapping of threads to processors the MNEMEE tool
flow provides tools, too.

Other typical problems of embedded systems are the available amount of main
memory, and sometimes the heterogeneous structure. To cope with such prob-
lems, RTEMS runs completely independent on each processor with only the
necessary application parts linked into the binary. This enables a mixture of
even different processor architectures on one platform.

However, this is a big problem when a remote thread should be spawned. In
Figure 8 a typically program is shown which runs on a shared memory system,
e.g. the host:

0x4000

0x5000

0x4000

0x5000

f2:

f1:

main:0x0000

0x4000

0x5000

Core A

f2:

f1:

main:0x0000

0x4000

0x5000

Core B

.
.
.

.
.
.

.
.
.

.
.
.

thread_create(&f1, A);

thread_create(&f2, B);

thread_create(&f1, A);

thread_create(&f2, B);

.
.
.

.
.
.

.
.
.

.
.
.

Figure 8: Identical Program Code On Each Node

Execution is started on processor A within main(). Now A creates two threads:
f1() on A resp. f2 on B. Due to the same memory layout on both processors,
the thread entry points are equal.

0x4000

thread_create(&f1, A);

f1:

main:0x0000

0x4000

Core A

0x0000

Core B

f2:

??????

thread_create(&f2, B);

.
.
.

.
.
.

.
.
.

.
.
.

Figure 9: Different Program Code



14 r²g

If we have different architectures or a different memory layout, the linker that
links the binary for A will not be able to determine the thread entry points in
B and vice versa (cf. Figure 9).

The solution for this problem can be found in Figure 10:

.
.
.

.
.
.

.
.
.

f1:

main:

thread_create(1, A);

thread_create(2, B);

0x0000

0x1000

0x0000init: init:

Core A Core B

.
.
.

0x1000

(2)

(1) (1)

0x1000

f2:

thread_freg(&f1, 1);

thread_freg(&main, 0); thread_freg(&f2, 2);

0x1000

0x5000

0x5000

Figure 10: R²G Solution: Function Identifiers

In the first step (arrow marked (1)), R²G calls init() on every processor. Within
this function all possible thread entry points have to be assigned to unique
identifiers called fid (Function IDentifier). The assignment of a fid to a function
is implemented by r2g_thread_freg()(cf. A.1.1.11 on page 21). Although not
mandatory, it is a good practice to use identical identifiers for the same thread
functions distributed on different processors to better keep track of the appli-
cation, especially for later debugging. The fid zero has a special meaning for
R²G: It stands for the main() routine. In the second step, R²G creates a thread
for every function with fid equal to zero. Hence, the mapping of main() to any
arbitrary processor is possible.

4.3 synchronization

Another problem when using the RTEMS pthread implementation was the
missing synchronization of threads running on different processors. Here, R²G
implements a subset of the POSIX synchronization primitives Mutex, Condition
Variables, and Barriers. Detailed information for each primitive can be found
in A.3 on page 35.

4.4 rtlib porting

Another important part of the R²G project was to port RTLib to the new inter-
face. Due to the R²G design, this job was mostly straightforward. The majority
of the R²G API implements POSIX like semantics. Therefore, it was sufficient
to replace ”pthread_” with ”r2g_”. To avoid conflicts with the POSIX interface
of RTEMS, we do not use the original POSIX names for the functions.



4.4 rtlib porting 15

While porting RTLib special attention was paid on the internal data structures.
Whenever possible, we locate the data in the private memory. Shared data are
statically mapped into the shared memory. All data areas unknown at compile
time are allocated with r2g_mem_alloc() (cf. A.2.1.1 on page 32) during run-
time.

To support our heterogeneous platforms we had to change the RTLib API:

• mps_config_thread

This function gets an additional parameter to specify the mapping of the
thread to a processor. The thread entry function parameter was substi-
tuted by the fid.

• mps_config_freg

We added this additional API call as a wrapper around r2g_thread_-

freg(). The difference is that this new function takes an RTLib thread
entry function as parameter and not a POSIX style thread entry function.

• app_register_functions

This function has to be additionally implemented for the application.
It has to exist exactly once on each processor. Basically, this func-
tion is a wrapper for the init() routine described in the last section.
Here, the application has to register the thread entry functions with
mps_config_freg.

Applications parallelized with the MNEMEE tool flow have not to deal with
R²G directly. Instead, a modified RTLib (aka. R²G-RTLib) has to be used. De-
tailed instructions on how to port an application to the new R²G-RTLib API
can be found in [18].



5
C O N C L U S I O N

In this technical report we have presented R²G which is an intermediate layer
between the application and the operating system. By introducing function
identifiers and additional mapping parameters to the thread creation routine,
we managed to spawn threads on different CPUs. The whole R²G API is mostly
conforming to POSIX semantics (the exeptions are depicted in Appendix A). In
this way we can provide a POSIX like environment even in future heteroge-
neous systems.

Especially, the MNEMME project has benefited very much of this work. The
tools, which were designed to support POSIX interfaces, are now able to pro-
duce code for our embedded platforms, too.

With the actual setup we were able to parallelize our MPEG4 encoder bench-
mark application fully automatically with the MNEMEE tools. Thereafter, we
were able to simulate the transformed code with only slight modifications.

The R²G project is completely finished and in a stable state. Thus, future work
will only concern the integration of further platforms into the RTEMS operating
system.

16



A
A P P E N D I X : R ² G A P I

a.1 thread subsystem

The R²G thread API enables the spawning of threads and the usage of different
thread operations across processor core boundaries.

Therefore, the interface differs from POSIX. Pointers to the thread entry func-
tion are not used anymore. Instead, an application needs to register any thread
entry point explicitly. This means to couple the entry point with an unique iden-
tifier via the function r2g_thread_freg() on the CPU/CPUs where the thread
will be executed.

a.1.1 Thread Operations

a.1.1.1 int __r2g_thread_create (r2g_thread_t ∗ thread, const r2g_thread_attr_t
∗ attr, r2g_threadfunc_t ∗ start_routine, void ∗ arg)

Create a thread on the local cpu.

Parameters:

thread thread identifier object

attr thread attribute object

start_routine thread entry point

arg thread argument pointer

Returns:

On success, 0 is returned; on error, an error number is returned.

Return values:

EINVAL Invalid cpu and/or fid

ENOMEM No memory to allocate thread structure

EAGAIN Insufficient resources to create thread or system limit reached

This function implements low-level thread creation on the local node. However,
you can call it in your application, too. In this way you will create a thread on
the same node in the POSIX way.

Remarks:

Conforming to POSIX 1003.1-2001 (pthread_create).

17



18 appendix : r²g api

a.1.1.2 r2g_sighandler_t r2g_signal (int signum, r2g_sighandler_t handler)

ANSI C signal handling.

Parameters:

signum Signal number

handler Signal handler routine

Returns:

Returns the previously installed signal handler.

This functions establishes the signal handler handler for the signal signum.

Remarks:

Conforming to ANSI C (signal).

a.1.1.3 int r2g_thread_cancel (r2g_thread_t thread)

Cancel execution of a thread.

Parameters:

thread thread identifier

Returns:

On success, 0 is returned; on error, an error number is returned.

Return values:

ESRCH No thread with the ID thread could be found

EINVAL Invalid request

This function sends a cancellation request to the thread identified by thread.
Whether and when the target thread reacts to the cancellation request depends
on the actual status of the thread.

Remarks:

Conforming to POSIX 1003.1-2001 (pthread_cancel).

a.1.1.4 void r2g_thread_cleanup_pop (int execute)

Remove routine from top of thread cleanup stack.

Parameters:

execute Execute routine while popping

This function removes the routine at the top of the stack of clean-up handlers,
and optionally executes it if execute is non-zero.

Remarks:

Conforming to POSIX 1003.1-2001 (pthread_cleanup_pop).



A.1 thread subsystem 19

a.1.1.5 void r2g_thread_cleanup_push (void(∗)(void ∗) routine, void ∗ arg)

Push cleanup handler to cleanup stack.

Parameters:

routine handler to execute when r2g_thread_exit() or r2g_thread_cleanup_-
pop()

arg argument for handler routine

This function pushes routine onto the top of the stack of clean-up handlers.
When routine is later invoked, it will be given arg as its argument.

Remarks:

Conforming to POSIX 1003.1-2001 (pthread_cleanup_push).

a.1.1.6 int r2g_thread_create (r2g_thread_t ∗ thread, const r2g_thread_attr_t ∗
attr, int fid, void ∗ arg, unsigned int cpu)

Create a thread.

Parameters:

thread thread identifier object

attr thread attribute object

fid function identifier of thread entry point

arg thread argument pointer

cpu cpu on which the thread will be created

Returns:

On success, 0 is returned; on error, an error number is returned.

Return values:

EINVAL Invalid cpu and/or fid

ENOMEM No memory to allocate thread structure

EAGAIN Insufficient resources to create thread or system limit reached

This function starts a new thread. The new thread starts execution by invoking
the routine represented by fid on the cpu cpu. The start routine gets arg passed
as the sole argument.

The new thread terminates in one of the following ways:

• it calls r2g_thread_exit(), specifying an exit status value that is available
to another thread that calls r2g_thread_join().

• it returns from the start routine. This is equivalent to calling r2g_thread_-
exit() with the value supplied in the return statement.

• it is canceled (see r2g_thread_cancel()).

• any of the threads calls exit(), or the main thread performs a return from
main(). This causes the termination of all threads.



20 appendix : r²g api

The attr argument points to a r2g_thread_attr_t structure whose contents are
used at thread creation time to determine attributes for the new thread. this
structure is initialized using r2g_thread_attr_init() and related functions. If attr
is NULL, then the thread is created with default attributes.

Remarks:

Not conforming to the POSIX 1003.1-2001 pthread_create() function. The
R²G implementation has an additional argument to specify the CPU where
to execute the thread. Also the function identifier is used as thread entry
and not the function pointer.

a.1.1.7 int r2g_thread_detach (r2g_thread_t thread)

Detach a thread.

Parameters:

thread thread identifier

Returns:

On success, 0 is returned; on error, an error number is returned.

Return values:

EINVAL Thread is not joinable

This function marks the thread identified by thread as detached. When a de-
tached thread terminates, its resources are automatically released back to the
system without the need for another thread to join with the terminated thread.

Remarks:

Conforming to POSIX 1003.1-2001 (pthread_detach).

a.1.1.8 int r2g_thread_equal (r2g_thread_t t1, r2g_thread_t t2)

Compare threads identifiers.

Parameters:

t1 thread identifier of first thread

t2 thread identifier of second thread

Returns:

If the two threads are equal, r2g_thread_equal() returns a non-zero value;
otherwise, it returns 0.

This function compares two thread identifiers.

Remarks:

Conforming to POSIX 1003.1-2001 (pthread_equal).



A.1 thread subsystem 21

a.1.1.9 void r2g_thread_exit (void ∗ value_ptr)

Terminate Thread execution.

Parameters:

value_ptr Return value of thread

Returns:

This function does not return to the caller.

The r2g_thread_exit() function terminates the calling thread and returns a value
via retval that (if the thread is joinable) is available to another thread in the same
process that calls r2g_thread_join().

Any clean-up handlers established by r2g_thread_cleanup_push() that have not
yet been popped, are popped (in the reverse of the order in which they were
pushed) and executed. If the thread has any thread-specific data, then, after the
clean-up handlers have been executed, the corresponding destructor functions
are called, in an unspecified order.

When a thread terminates, process-shared resources (e.g., mutexes, condition
variables, semaphores, and file descriptors) are not released, and functions reg-
istered using atexit() are not called.

Remarks:

Conforming to POSIX 1003.1-2001 (pthread_exit).

a.1.1.10 r2g_threadfunc_t∗ r2g_thread_fget (int fid)

Get Address of function.

Parameters:

fid function identifier

Returns:

On success, the address of the routine registered by r2g_thread_freg() is
returned; on error, NULL is returned.

This function returns the address of routine represented by the function iden-
tifier fid. If no function is registered NULL is returned.

Remarks:

This function is a R²G specific extension.

a.1.1.11 int r2g_thread_freg (r2g_threadfunc_t routine, int fid)

Add function to call table.

Parameters:

routine entry of thread function

fid function identifier



22 appendix : r²g api

Returns:

On success, 0 is returned; on error, an error number is returned.

Return values:

EINVAL invalid function identifier

This functions registers the procedure routine under the function identifier fid.
The pair (routine, fid) is only valid for the calling CPU. To use the fid also on
another CPU (i.e. for creating threads), r2g_thread_freg() has to be called on
that CPU, too.

Function identifiers are used in thread creation (r2g_thread_create()) and for
destructors (r2g_key_create()) of thread specific keys.

Note:

The routine represented by fid can be overwritten at any time by another
call to r2g_thread_freg() on the same CPU.

Warning:

The fid zero is used to identify main(). Other functions should not use this
identifier. After startup, R²G will search and execute any function with fid
= 0.

Remarks:

This function is a R²G specific extension.

a.1.1.12 int r2g_thread_join (r2g_thread_t thread, void ∗∗ value_ptr)

Wait for thread termination.

Parameters:

thread thread identifier

value_ptr Return pointer of thread

Returns:

On success, 0 is returned; on error, an error number is returned.

Return values:

EINVAL Thread is not joinable

This function waits for the thread specified by thread to terminate. If that thread
has already terminated, then r2g_thread_join() returns immediately. The thread
specified by thread must be joinable.

If retval is not NULL, then r2g_thread_join() copies the exit status of the target
thread (the value that the target thread supplied to r2g_thread_exit() or via
return) into the location pointed to by ∗retval. If the target thread was canceled,
then R2G_THREAD_CANCELED is placed in ∗retval.

After a successful call to r2g_thread_join(), the caller is guaranteed that the
target thread has terminated.



A.1 thread subsystem 23

Warning:

If multiple threads simultaneously try to join with the same thread, the
results are undefined. If the thread calling r2g_thread_join() is canceled,
then the target thread will remain joinable
Joining with a thread that has previously been joined results in undefined
behavior.

Remarks:

Conforming to POSIX 1003.1-2001 (pthread_join).

a.1.1.13 int r2g_thread_kill (r2g_thread_t thread, int sig)

Send a signal to a thread.

Parameters:

thread thread identifier

sig signal to deliver

Returns:

On success, 0 is returned; on error, an error number is returned.

Return values:

ESRCH No thread with the ID thread could be found

EINVAL An invalid signal was specified

This function sends the signal sig to the thread identified by thread. The signal
is asynchronously directed to thread.

Remarks:

Conforming to POSIX 1003.1-2001 (pthread_kill).

a.1.1.14 r2g_thread_t r2g_thread_self (void)

Get thread structure of running thread.

Returns:

This function always succeeds, returning the calling thread’s ID.

This function returns the identifier of the calling thread. This is the same value
that is returned in ∗thread in the r2g_thread_create() call that created this
thread.

Remarks:

Conforming to POSIX 1003.1-2001 (pthread_self).

a.1.1.15 int r2g_thread_yield (void)

Yield the processor.



24 appendix : r²g api

Returns:

On success, 0 is returned; on error, an error number is returned.

This function causes the calling thread to relinquish the CPU. The thread is
placed at the end of the run queue for its static priority and another thread is
scheduled to run.

Remarks:

Conforming to POSIX 1003.1-2001 (pthread_yield).

a.1.2 Thread Attributes

a.1.2.1 int r2g_thread_attr_destroy (r2g_thread_attr_t ∗ attr)

Destroy thread attribute object.

Parameters:

attr thread attribute object

Returns:

On success, 0 is returned; on error, an error number is returned.

Return values:

EINVAL Invalid attribute pointer

This function destroys the thread attributes object pointed to by attr. Destroying
a thread attributes object has no effect on threads that were created using that
object.

Remarks:

Conforming to POSIX 1003.1-2001 (pthread_thread_attr_destroy).

a.1.2.2 int r2g_thread_attr_getdetachstate (const r2g_thread_attr_t ∗ attr, int ∗
detachstate)

Get detach state attribute in thread attribute object.

Parameters:

attr thread attribute object

detachstate buffer for detach state

Returns:

On success, 0 is returned; on error, an error number is returned.

Return values:

EINVAL Invalid attribute pointer

This function returns the detach state attribute of the thread attribute object attr
in the buffer pointed to by detachstate.



A.1 thread subsystem 25

Remarks:

Conforming to POSIX 1003.1-2001 (pthread_thread_attr_getdetachstate).

a.1.2.3 int r2g_thread_attr_getflags (const r2g_thread_attr_t ∗ attr, int ∗ flags)

Get flags in thread attribute object.

Parameters:

attr thread attribute object

flags integer buffer for flags

Returns:

On success, 0 is returned; on error, an error number is returned.

Return values:

EINVAL Invalid attribute pointer

This function returns the flags of the thread attribute object attr in the buffer
pointed to by flags.

Remarks:

This function is a R²G specific extension.

a.1.2.4 int r2g_thread_attr_getschedpriority (const r2g_thread_attr_t ∗ attr, int ∗
schedpriority)

Get scheduling priority in thread attribute object.

Parameters:

attr thread attribute object

schedpriority buffer for scheduling priority

Returns:

On success, 0 is returned; on error, an error number is returned.

Return values:

EINVAL Invalid attribute pointer

This function returns the scheduling priority attribute of the thread attribute
object attr in the buffer pointed to by schedpriority.

Remarks:

This function is a R²G specific extension.

a.1.2.5 int r2g_thread_attr_getstackaddr (const r2g_thread_attr_t ∗ attr, void ∗∗
stackaddr)

Get stack address attribute in thread attribute object.



26 appendix : r²g api

Parameters:

attr thread attribute object

stackaddr stack address buffer

Returns:

On success, 0 is returned; on error, an error number is returned.

Return values:

EINVAL Invalid attribute pointer

This function returns the stack address attribute of the thread attribute object
attr in the buffer pointed to by stackaddr.

Warning:

This function is currently not supported in R²G!

Remarks:

Conforming to POSIX 1003.1-2001 (pthread_thread_attr_getstackaddr).

a.1.2.6 int r2g_thread_attr_getstacksize (const r2g_thread_attr_t ∗ attr, size_t ∗
stacksize)

Get stack size attribute in thread attribute object.

Parameters:

attr thread attribute object

stacksize buffer for stack size

Returns:

On success, 0 is returned; on error, an error number is returned.

Return values:

EINVAL Invalid attribute pointer

This function returns the stack size attribute of the thread attribute object attr
in the buffer pointed to by stacksize.

Remarks:

Conforming to POSIX 1003.1-2001 (pthread_thread_attr_getstacksize).

a.1.2.7 int r2g_thread_attr_init (r2g_thread_attr_t ∗ attr)

Initialize thread attribute object.

Parameters:

attr thread attribute object

Returns:

On success, 0 is returned; on error, an error number is returned.



A.1 thread subsystem 27

Return values:

EINVAL Invalid attribute pointer

This function initializes the thread attributes object pointed to by attr with de-
fault attribute values. After this call, individual attributes of the object can be
set using various related functions, and then the object can be used in one or
more r2g_thread_create() calls that create threads.

When a thread attributes object is no longer required, it should be destroyed
using the r2g_thread_attr_destroy() function.

Remarks:

Conforming to POSIX 1003.1-2001 (pthread_thread_attr_init).

a.1.2.8 int r2g_thread_attr_setdetachstate (r2g_thread_attr_t ∗ attr, int detach-
state)

Set detach state attribute in thread attribute object.

Parameters:

attr thread attribute object

detachstate detach state

Returns:

On success, 0 is returned; on error, an error number is returned.

Return values:

EINVAL Invalid attribute pointer

This function sets the detach state attribute of the thread attribute object re-
ferred to by attr to the value specified in detachstate. The detach state attribute
determines whether a thread created using the thread attributes object attr will
be created in a joinable or a detached state.

The following values may be specified in detachstate:

• R2G_THREAD_CREATE_JOINABLE

Create thread in joinable state

• R2G_THREAD_CREATE_DETACHED

Create thread in detached state

Default: R2G_THREAD_CREATE_JOINABLE is set.

Remarks:

Conforming to POSIX 1003.1-2001 (pthread_thread_attr_setdetachstate).

a.1.2.9 int r2g_thread_attr_setflags (r2g_thread_attr_t ∗ attr, int flags, int mask)

Sets or clears flags in thread attribute object.



28 appendix : r²g api

Parameters:

attr thread attribute object

flags flag value

mask flag mask

Returns:

On success, 0 is returned; on error, an error number is returned.

Return values:

EINVAL Invalid attribute pointer

This function sets or clears flags of the thread attributes object referred to by
attr to the value specified in flags masked by mask.

The following flags/masks are defiend:

R2G_THREAD_FPU – Thread uses the floating point unit (masked by R2G_-
THREAD_FPU_MASK)

Default: R2G_THREAD_FPU is set.

Remarks:

This function is a R²G specific extension.

a.1.2.10 int r2g_thread_attr_setschedpriority (r2g_thread_attr_t ∗ attr, int sched-
priority)

Set scheduling priority in thread attribute object.

Parameters:

attr thread attribute object

schedpriority scheduling priority value

Returns:

On success, 0 is returned; on error, an error number is returned.

Return values:

EINVAL Invalid attribute pointer

This function sets the scheduling priority attribute of the thread attribute object
attr to the value specified in schedpriority.

Remarks:

This function is a R²G specific extension.

a.1.2.11 int r2g_thread_attr_setstackaddr (r2g_thread_attr_t ∗ attr, void ∗ stack-
addr)

Set stack address attribute in thread attribute object.



A.1 thread subsystem 29

Parameters:

attr thread attribute object

stackaddr stack address
Returns:

On success, 0 is returned; on error, an error number is returned.

Return values:

EINVAL Invalid attribute pointer

This function sets the stack address attribute of the thread attribute object attr
to the value specified in stackaddr.

Warning:

This function is currently not supported in R²G!

Remarks:

Conforming to POSIX 1003.1-2001 (pthread_thread_attr_setstackaddr).

a.1.2.12 int r2g_thread_attr_setstacksize (r2g_thread_attr_t ∗ attr, size_t stack-
size)

Set stack size attribute in thread attribute object.

Parameters:

attr thread attribute object

stacksize value of stack size
Returns:

On success, 0 is returned; on error, an error number is returned.

Return values:

EINVAL Invalid attribute pointer

This function sets the stack size attribute of the thread attribute object attr to
the value specified in stacksize.

Default stack size is RTEMS_MINIMUM_STACK_SIZE.

Remarks:

Conforming to POSIX 1003.1-2001 (pthread_thread_attr_setstacksize).

a.1.3 Thread Specific Keys

a.1.3.1 void∗ r2g_getspecific (r2g_key_t key)

Get stored value.
Parameters:

key thread specific key object



30 appendix : r²g api

Returns:

On success, the value associated with key is returned; on error, NULL is
returned and errno is set to indicate the error.

Return values:

EINVAL Invalid Key

This function returns the value currently bound to the specified key on behalf
of the calling thread.

The effect of calling r2g_getspecific() or r2g_setspecific() with a key value not
obtained from r2g_key_create() or after key has been deleted with r2g_key_-
delete() is undefined.

Remarks:

Conforming to POSIX 1003.1-2001 (pthread_getspecific).

a.1.3.2 int r2g_key_create (r2g_key_t ∗ key, int fid)

Thread-specific data key creation.

Parameters:

key thread specific key object

fid Function ID of destructor called at thread exit

Returns:

On success, 0 is returned; on error, an error number is returned.

Return values:

ENOMEM No memory space available to allocate key

This function creates a thread-specific data key visible to all threads in the
process. Key values provided by r2g_key_create() are opaque objects used to
locate thread-specific data. Although the same key value may be used by dif-
ferent threads, the values bound to the key by r2g_setspecific() are maintained
on a per-thread basis and persist for the life of the calling thread.

An optional destructor function may be associated with each key value. At
thread exit, if a key value has a non-zero function identifier, and the thread has
a non-NULL value associated with that key, the value of the key is set to NULL,
and then the function pointed to is called with the previously associated value
as its sole argument. The order of destructor calls is unspecified if more than
one destructor exists for a thread when it exits.

Remarks:

Conforming to POSIX 1003.1-2001 (pthread_key_create). However, the de-
structor parameter is of cause a function identifier and not a function
pointer!



A.1 thread subsystem 31

a.1.3.3 int r2g_key_delete (r2g_key_t key)

Thread-specific data key deletion.

Parameters:

key thread specific key object

Returns:

On success, 0 is returned; on error, an error number is returned.

Return values:

EINVAL Invalid Key

EFAULT Destructor function not executable on this processor

This function deletes a thread-specific data key previously returned by r2g_-
key_create(). The thread-specific data values associated with key need not be
NULL at the time r2g_key_delete() is called. It is the responsibility of the ap-
plication to free any application storage or perform any cleanup actions for
data structures related to the deleted key or associated thread-specific data in
any threads; this cleanup can be done either before or after r2g_key_delete() is
called. Any attempt to use key following the call to r2g_key_delete() results in
undefined behavior.

Remarks:

Conforming to POSIX 1003.1-2001 (pthread_key_delete).

a.1.3.4 int r2g_setspecific (r2g_key_t key, const void ∗ value)

Store thread specific value.

Parameters:

key thread specific key object

value Value to be stored
Returns:

On success, 0 is returned; on error, an error number is returned.

Return values:

EINVAL Invalid Key

This function associates a thread-specific value with a key obtained via a previ-
ous call to r2g_key_create(). Different threads may bind different values to the
same key. These values are typically pointers to blocks of dynamically allocated
memory that have been reserved for use by the calling thread.

The effect of calling r2g_getspecific() or r2g_setspecific() with a key value not
obtained from r2g_key_create() or after key has been deleted with r2g_key_-
delete() is undefined.

Remarks:

Conforming to POSIX 1003.1-2001 (pthread_setspecific).



32 appendix : r²g api

a.2 memory subsystem

The memory subsystem is responsible for managing the shared memory and
to copy huge data via DMA.

a.2.1 Dynamic Shared Memory Allocation

The dynamic allocator is a basic part of R²G. The user interface consists of the
functions r2g_mem_alloc(), r2g_mem_free(), and r2g_mem_compress().

Both R²G itself and applications can use the function r2g_mem_alloc() to dy-
namically allocate shared memory. If the allocated memory is not needed any-
more, the memory can be freed by calling r2g_mem_free(). It is always a good
idea to free unused memory, because running out of shared memory is fatal
for R²G. Some management structures (such as r2g_thread_t) require additional
memory allocations when performing basic operations.

However, in some cases it will be possible that not enough memory is available,
even though memory was freed. This happens when the memory is filled with
too much buddy cache objects. To free unused object the application has to call
r2g_mem_compress().

a.2.1.1 void∗ r2g_mem_alloc (size_t size)

Allocation of memory.

Parameters:

size needed amount of memory

Returns:

Returns address of the allocated memory on success; on error, NULL is
returned and errno is set to indicate the error.

Return values:

ENOMEM Not enough memory available to satisfy the request

Allocates size bytes inside the shared memory address range.

a.2.1.2 void r2g_mem_compress (void)

Free internal memory.

Shrinks space needed by the buddy cache. Normally the cache is always grow-
ing. Tracking each cache element will result in a huge memory and/or com-
putation overhead. However, it is possible that the whole memory gets full
with buddy containers. In this case calling r2g_mem_compress can maybe free
unused buddies.



A.2 memory subsystem 33

Warning:

This function may take some time. R²G restructures the cache objects, so
that free cache lines will be created, which then can be freed. During this
time the whole memory subsystem is locked for each processor. Maybe
you get trouble with hard real-time constrains.

a.2.1.3 int r2g_mem_free (void ∗ addr)

Free memory.

Parameters:

addr memory to free

Frees memory pointed to by addr. The memory has to be previously allocated
by r2g_mem_alloc().

’free’ means to make the memory available for further allocation and to concate-
nate belonging memories, so that larger allocation requests can be satisfied.

a.2.2 DMA Transfer Engine

To support huge block transfers in form of Direct Memory Access (DMA) two
functions are provided; r2g_dma_issue_1d() which issues a new DMA com-
mand, and r2g_dma_sync() which synchronizes the DMA transfer. DMA trans-
fers are always asynchronous to CPU execution. Thus, the CPU can perform
other tasks until the transfer is finished. There is no way for the application
to determine the arrival of the data. Moreover, the DMA engine is explicitly
allowed to copy the data in any order. Hence, the source buffer must not be
modified until the transfer will be completed. However, the application can
synchronize the DMA by calling r2g_dma_sync(). This call blocks until every
byte is copied.

a.2.2.1 int r2g_dma_issue_1d (size_t size, unsigned char ∗ srcaddr, unsigned char
∗ dstaddr, r2g_dma_obj_t ∗ dmaobj)

One dimensional DMA transfer.
Parameters:

size data size
srcaddr source address
dstaddr destination address
dmaobj DMA reference object

Returns:

On success, 0 is returned; on error, an error number is returned.

Return values:

EFAULT Error in R²G/RTEMS



34 appendix : r²g api

EBUSY All units are busy

This functions performs a DMA transfer from srcaddr to dstaddr.

This function is non-blocking. When this function returns the DMA transfer is
possible not finished. To synchronize call r2g_dma_sync() with the dmaobj.

Note:

The DMA unit used inside the CoMET platform can maximally transfer
134,215,680 Byte.

Warning:

DMA’s are not cache coherent. You have to flush caches manually! (For
CoMET use BSP_dcache_flush())

a.2.2.2 int r2g_dma_issue_2d (unsigned int rowsize, unsigned int rows, unsigned
int rowlen1, unsigned int rowlen2, int ∗ srcaddr, int ∗ dstaddr, r2g_-
dma_obj_t ∗ dmaobj)

Two dimensional DMA transfer.

Parameters:

rowsize size of the row which has to be copy

rows number of rows to copy

rowlen1 size of one row in the first location

rowlen2 size of one row in the second location

srcaddr source address

dstaddr destination address

dmaobj DMA reference object

Returns:

On success, 0 is returned; on error, an error number is returned.

Return values:

EFAULT Error in R²G/RTEMS

EBUSY All units are busy

This functions performs a 2D DMA transfer from srcaddr to dstaddr. All sizes
are in respect to the MPARAM word size (4 byte).

With addrtype the address type is specified:

• R2G_ADDRTYPE_LOCAL

address in the scope of the processor

• R2G_ADDRTYPE_GLOBAL

address in the scope of the system

This function is non-blocking. When this function returns the DMA transfer is
possible not finished. To synchronize call r2g_dma_sync() with the dmaobj.



A.3 synchronization primitives 35

Warning:

Use only R2G_ADDRTYPE_LOCAL as address type when possible. Oth-
erwise, the global DMA unit may gets overloaded.
Use this function only on MPARM!
DMA’s are not cache coherent, especially when you copy on local memo-
ries across core boundaries! Copy operations to the own local store results
a D-Cache flush!

a.2.2.3 int r2g_dma_sync (r2g_dma_obj_t ∗ dmaobj)

Synchronize DMA transfer.

Parameters:

dmaobj DMA reference object

Returns:

On success, 0 is returned; on error, an error number is returned.

Return values:

EINVAL Invalid DMA object

This functions synchronizes the DMA transfer reflected by dmaobj. After return
the DMA is completely finished.

a.3 synchronization primitives

R²G supports four different synchronization primitives. All of those are usable
across processor core boundaries. Moreover, most parts of the POSIX standard
are implemented.

a.3.1 Semaphore

The basic synchronization primitives are semaphores. The generic implemen-
tation of the other synchronization primitives is based on semaphores. The
semaphore interface has nearly POSIX semantic.

a.3.1.1 int r2g_sem_destroy (r2g_sem_t ∗ sem)

Destroys the unnamed semaphore.

Parameters:

sem address of semaphore

Returns:

Returns 0 on success; on error, -1 is returned and errno is set to indicate
the error.



36 appendix : r²g api

This function destroys the unnamed semaphore at the address pointed to by
sem.

Warning:

Destroying a semaphore that other processes or threads are currently
blocked on (in r2g_sem_wait()) produces undefined behavior.

Remarks:

Conforming to POSIX.1-2001 (sem_destroy).

a.3.1.2 int r2g_sem_getvalue (r2g_sem_t ∗ sem, int ∗ sval)

Get value of a semaphore.

Parameters:

sem address of semaphore

sval integer buffer for storing semaphore value

Returns:

Returns 0 on success; on error, -1 is returned and errno is set to indicate
the error.

This function returns the current semaphore value of the semaphore object sem
in the buffer pointed to by sval.

Remarks:

Conforming to POSIX.1-2001 (sem_get_value).

a.3.1.3 int r2g_sem_init (r2g_sem_t ∗ sem, int pshared, unsigned int value)

Initializes a unnamed semaphore.

Parameters:

sem address of semaphore

pshared semaphore is shared between between processes

value initial value for the semaphore

Returns:

Returns 0 on success; on error, -1 is returned and errno is set to indicate
the error.

Return values:

EINVAL Invalid address for shared semaphore

ENOMEM No memory for internal allocations

EINTR The call was interrupted by a signal handler

This function initializes the unnamed semaphore at the address pointed to by
sem. The value argument specifies the initial value for the semaphore.



A.3 synchronization primitives 37

The pshared argument indicates whether this semaphore is to be shared between
the threads of a process, or between processes.

Warning:

If you need a semaphore across core boundaries, ∗sem has to be allocated
in the shared memory

Remarks:

Conforming to POSIX.1-2001 (sem_init).

a.3.1.4 int r2g_sem_post (r2g_sem_t ∗ sem)

Increments (unlocks) a semaphore.

Parameters:

sem address of semaphore

Returns:

Returns 0 on success; on error, -1 is returned and errno is set to indicate
the error.

Return values:

EFAULT Error in RTEMS subsystem

EOVERFLOW The maximum allowable value for a semaphore would be
exceeded

This function increments the semaphore pointed to by sem. If the semaphore’s
value consequently becomes greater than zero, then another thread blocked in
a r2g_sem_wait() call will be woken up and proceed to lock the semaphore.

Remarks:

Conforming to POSIX.1-2001 (sem_post).

a.3.1.5 int r2g_sem_trywait (r2g_sem_t ∗ sem)

Decrements (locks) a semaphore if possible.

Parameters:

sem address of semaphore

Returns:

Returns 0 on success; on error, -1 is returned and errno is set to indicate
the error.

Return values:

EAGAIN The operation could not be performed without blocking

EFAULT Error in RTEMS subsystem

EINTR The call was interrupted by a signal handler



38 appendix : r²g api

This function is the same as r2g_sem_wait(), except that if the decrement cannot
be immediately performed, then call returns an error (errno set to EAGAIN)
instead of blocking.

Remarks:

Conforming to POSIX.1-2001 (sem_trywait).

a.3.1.6 int r2g_sem_wait (r2g_sem_t ∗ sem)

Decrements (locks) a semaphore.

Parameters:

sem,: address of semaphore

Returns:

Returns 0 on success; on error, -1 is returned and errno is set to indicate
the error.

Return values:

EFAULT Error in RTEMS subsystem

EINTR The call was interrupted by a signal handler

This function decrements the semaphore pointed to by sem. If the semaphore’s
value is greater than zero, then the decrement proceeds, and the function re-
turns, immediately. If the semaphore currently has the value zero, then the
call blocks until either it becomes possible to perform the decrement (i.e., the
semaphore value rises above zero), or a signal handler interrupts the call.

Remarks:

Conforming to POSIX.1-2001 (sem_wait).

a.3.1.7 int r2g_sem_wait_nointr (r2g_sem_t ∗ sem)

Decrements (locks) a semaphore without signal interruption.

Parameters:

sem,: address of semaphore

Returns:

Returns 0 on success; on error, -1 is returned and errno is set to indicate
the error.

Return values:

EFAULT Error in RTEMS subsystem

This function decrements the semaphore pointed to by sem. If the semaphore’s
value is greater than zero, then the decrement proceeds, and the function re-
turns, immediately. If the semaphore currently has the value zero, then the
call blocks until either it becomes possible to perform the decrement (i.e., the



A.3 synchronization primitives 39

semaphore value rises above zero). The call restart itself when a signal handler
interrupts.

Remarks:

This functtion is not part of POSIX. It is just a wrapper around r2g_sem_-
wait().

a.3.2 Mutex

a.3.2.1 int r2g_mutex_destroy (r2g_mutex_t ∗ mutex)

Destroy a mutex.

Parameters:

mutex Mutex object

Returns:

On success, 0 is returned; on error, an error number is returned.

This function destroys the mutex object referenced by mutex.

Warning:

Destroying a mutex that other threads are currently blocked on (in r2g_-
mutex_lock()) produces undefined behavior.

Remarks:

Conforming to POSIX 1003.1c (pthread_mutex_destroy).

a.3.2.2 int r2g_mutex_init (r2g_mutex_t ∗ mutex, const r2g_mutexattr_t ∗ attr)

Initialize a mutex.

Parameters:

mutex Mutex object

attr Attribute of mutex

Returns:

On success, 0 is returned; on error, an error number is returned.

Return values:

ENOMEM Insufficient memory to allocate internal data structures

EINVAL Invalid attributes

EFAULT Mutex object is not in shared memory, but shared mutex re-
quested

This function initialize the mutex referenced by mutex with attributes specified
by attr. If attr is NULL, the default mutex attributes are used. Upon successful
initialization, the state of the mutex becomes initialized and unlocked.



40 appendix : r²g api

Attempting to initialize an already initialized mutex results in undefined be-
havior.

Remarks:

Conforming to POSIX 1003.1c (pthread_mutex_init).

a.3.2.3 int r2g_mutex_lock (r2g_mutex_t ∗ mutex)

Lock a mutex.

Parameters:

mutex Mutex object

Returns:

On success, 0 is returned; on error, an error number is returned.

Return values:

EFAULT Error in RTEMS subsystem

EAGAIN Maximum recursion deep reached

EDEADLK The current thread already owns the mutex

This function locks the mutex object referenced by mutex. If the mutex is already
locked, the calling thread will be blocked until the mutex becomes available.

Remarks:

Conforming to POSIX 1003.1c (pthread_mutex_lock).

a.3.2.4 int r2g_mutex_trylock (r2g_mutex_t ∗ mutex)

Try to lock a mutex.

Parameters:

mutex Mutex object

Returns:

On success, 0 is returned; on error, an error number is returned.

Return values:

EFAULT Error in RTEMS subsystem

EAGAIN Maximum recursion deep reached

EBUSY The mutex could not be acquired because it was already locked

EDEADLK The current thread already owns the mutex

This function trys to lock the mutex object referenced by mutex. If the mutex is
already locked, the function returns EBUSY.

Remarks:

Conforming to POSIX 1003.1c (pthread_mutex_trylock).



A.3 synchronization primitives 41

a.3.2.5 int r2g_mutex_unlock (r2g_mutex_t ∗ mutex)

Unlock a mutex.

Parameters:

mutex Mutex object

Returns:

On success, 0 is returned; on error, an error number is returned.

Return values:

EFAULT Error in RTEMS subsystem

EPERM The current thread does not own the mutex

This function unlocks the mutex object referenced by mutex.

Remarks:

Conforming to POSIX 1003.1c (pthread_mutex_unlock).

a.3.2.6 int r2g_mutexattr_destroy (r2g_mutexattr_t ∗ attr)

Destroy mutex attribute object.

Parameters:

attr mutex attribute object

Returns:

On success, 0 is returned; on error, an error number is returned.

Return values:

0 Success

EINVAL Invalid attribute pointer

This function destroys the mutex attributes object pointed to by attr. Destroying
a mutex attributes object has no effect on mutex that were created using that
object.

Remarks:

Conforming to POSIX 1003.1c (pthread_mutexattr_destroy).

a.3.2.7 int r2g_mutexattr_getpshared (const r2g_mutexattr_t ∗ attr, int ∗
pshared)

Get pshared attribute of mutex attribute object.

Parameters:

attr mutex attribute object

pshared buffer for the mutex pshared attribute value



42 appendix : r²g api

Returns:

On success, 0 is returned; on error, an error number is returned.

Return values:

EINVAL Invalid attribute pointer

This function returns the pshared attribute of the mutex attribute object attr in
the buffer pointed to by pshared.

Remarks:

Conforming to POSIX 1003.1c (pthread_mutexattr_getpshared).

a.3.2.8 int r2g_mutexattr_gettype (const r2g_mutexattr_t ∗ attr, int ∗ type)

Get mutex type attribute of mutex attribute object.

Parameters:

attr mutex attribute object

type buffer for the mutex type attribute value

Returns:

On success, 0 is returned; on error, an error number is returned.

Return values:

EINVAL Invalid attribute pointer

This function returns the mutex type attribute of the mutex attribute object attr
in the buffer pointed to by type.

Remarks:

Conforming to POSIX 1003.1c (pthread_mutexattr_gettype).

a.3.2.9 int r2g_mutexattr_init (r2g_mutexattr_t ∗ attr)

Initialize a mutex attribute object.

Parameters:

attr mutex attribute object

Returns:

On success, 0 is returned; on error, an error number is returned.

This function initializes the mutex attributes object pointed to by attr with de-
fault attribute values. After this call, individual attributes of the object can be
set using various related functions, and then the object can be used in one or
more r2g_mutex_init() calls that create mutexes.

When a mutex attributes object is no longer required, it should be destroyed
using the r2g_mutexattr_destroy() function.



A.3 synchronization primitives 43

Remarks:

Conforming to POSIX 1003.1c (pthread_mutexattr_init).

a.3.2.10 int r2g_mutexattr_setpshared (r2g_mutexattr_t ∗ attr, int pshared)

Set pshared attribute of mutex attribute object.

Parameters:

attr mutex attribute object

pshared the mutex pshared attribute value

Returns:

On success, 0 is returned; on error, an error number is returned.

Return values:

EINVAL Invalid pshared argument

EINVAL Invalid attribute pointer

This function sets the pshared attribute in the mutex attribute object pointed to
by attr. Valid settings for pshared include:

• R2G_PROCESS_SHARED

This type of mutex is shared between threads on different CPU’s

• R2G_PROCESS_PRIVATE

This type of mutex is not guaranteed to be shared between threads on
different CPU’s

R²G Default: R2G_PROCESS_SHARED

Remarks:

Conforming to POSIX 1003.1c (pthread_mutexattr_setpshared).

a.3.2.11 int r2g_mutexattr_settype (r2g_mutexattr_t ∗ attr, int type)

Set mutex type attribute of mutex attribute object.

Parameters:

attr mutex attribute object

type the mutex type attribute value

Returns:

On success, 0 is returned; on error, an error number is returned.

Return values:

EINVAL Invalid type argument

EINVAL Invalid attribute pointer



44 appendix : r²g api

This function sets the mutex type attribute in the specified mutex attribute
object pointed to by attr. Valid settings for type include:

• R2G_MUTEX_NORMAL

This type of mutex does not detect deadlock. An attempt to relock this
mutex without first unlocking it deadlocks. Attempting to unlock a mu-
tex locked by a different thread results in undefined behavior. Attempt-
ing to unlock an unlocked mutex results in undefined behavior.

• R2G_MUTEX_ERRORCHECK

This type of mutex provides error checking. An attempt to relock this
mutex without first unlocking it returns with an error. An attempt to
unlock a mutex that another thread has locked returns with an error. An
attempt to unlock an unlocked mutex returns with an error.

• R2G_MUTEX_RECURSIVE

A thread attempting to relock this mutex without first unlocking it suc-
ceeds in locking the mutex. The relocking deadlock that can occur with
mutexes of type R2G_MUTEX_NORMAL cannot occur with this type of
mutex. Multiple locks of this mutex require the same number of unlocks
to release the mutex before another thread can acquire the mutex. An
attempt to unlock a mutex that another thread has locked returns with
an error. An attempt to unlock an unlocked mutex returns with an error.

• R2G_MUTEX_DEFAULT

Attempting to recursively lock a mutex of this type results in undefined
behavior. Attempting to unlock a mutex of this type that was not locked
by the calling thread results in undefined behavior. Attempting to unlock
a mutex of this type that is not locked results in undefined behavior.

Remarks:

Conforming to POSIX 1003.1c (pthread_mutexattr_settype).

a.3.3 Condition Variable

a.3.3.1 int r2g_cond_broadcast (r2g_cond_t ∗ cond)

Wakeup all waiting processes.

Parameters:

cond Condition object

Returns:

On success, 0 is returned; on error, an error number is returned.

This function unblocks all threads currently blocked on the specified condition
variable cond.

It can be called by a thread whether or not it currently owns the mutex that
threads calling r2g_cond_wait() have associated with the condition variable



A.3 synchronization primitives 45

during their waits; however, if predictable scheduling behavior is required, then
that mutex shall be locked by the thread calling r2g_cond_broadcast() or r2g_-
cond_signal().

This function has no effect if there are no threads currently blocked on cond.

Remarks:

Conforming to POSIX 1003.1-2001 (pthread_cond_broadcast).

a.3.3.2 int r2g_cond_destroy (r2g_cond_t ∗ cond)

Destroy a condition variable.

Parameters:

cond Condition object

Returns:

On success, 0 is returned; on error, an error number is returned.

Return values:

0 Success

Destroys the given condition variable cond.

Warning:

Destroying a condition variable that other threads are currently blocked on
(in r2g_cond_wait()) produces undefined behavior.

Remarks:

Conforming to POSIX 1003.1-2001 (pthread_cond_destroy).

a.3.3.3 int r2g_cond_init (r2g_cond_t ∗ cond, const r2g_condattr_t ∗ attr)

Initialize a condition variable.

Parameters:

cond Condition object

attr Attribute of conditional

Returns:

On success, 0 is returned; on error, an error number is returned.

Return values:

0 Success

ENOMEM Insufficient memory to allocate internal data structures

EINVAL Invalid attributes

EFAULT Condition variable object is not in shared memory, but shared
condition variable requested



46 appendix : r²g api

Initialize the condition variable cond with the attributes attr. If attr is NULL, the
default attributes will be used.

Attempting to initialize an already initialized condition variable results in un-
defined behavior.

Remarks:

Conforming to POSIX 1003.1-2001 (pthread_cond_init).

a.3.3.4 int r2g_cond_signal (r2g_cond_t ∗ cond)

Wakeup one process.

Parameters:

cond Condition object

Returns:

On success, 0 is returned; on error, an error number is returned.

This function unblocks at least one of the threads that are blocked on the spec-
ified condition variable cond (if any threads are blocked on cond).

It can be called by a thread whether or not it currently owns the mutex that
threads calling r2g_cond_wait() have associated with the condition variable
during their waits; however, if predictable scheduling behavior is required, then
that mutex shall be locked by the thread calling r2g_cond_broadcast() or r2g_-
cond_signal().

This function has no effect if there are no threads currently blocked on cond.

Remarks:

Conforming to POSIX 1003.1-2001 (pthread_cond_signal).

a.3.3.5 int r2g_cond_wait (r2g_cond_t ∗ cond, r2g_mutex_t ∗ mutex)

Wait on a condition variable.

Parameters:

cond Condition object

mutex Mutex reference

Returns:

On success, 0 is returned; on error, an error number is returned.

Return values:

0 Success

The r2g_thread_cond_wait() function block on a condition variable. It has to be
called with mutex locked by the calling thread or undefined behavior results.

This functions atomically release mutex and cause the calling thread to block
on the condition variable cond; atomically here means "atomically with respect



A.3 synchronization primitives 47

to access by another thread to the mutex and then the condition variable". That
is, if another thread is able to acquire the mutex after the about-to-block thread
has released it, then a subsequent call to r2g_cond_broadcast() or r2g_cond_-
signal() in that thread behave as if it were issued after the about-to-block thread
has blocked.

Upon successful return, the mutex has been locked and is owned by the calling
thread.
Remarks:

Conforming to POSIX 1003.1-2001 (pthread_cond_wait).

a.3.3.6 int r2g_condattr_destroy (r2g_condattr_t ∗ attr)

Destroy condition variable attribute object.

Parameters:

attr condition variable attribute object

Returns:

On success, 0 is returned; on error, an error number is returned.

Return values:

EINVAL Invalid attribute pointer

This function destroys the condition variable attributes object pointed to by
attr. Destroying a condition variable attributes object has no effect on condition
variables that were created using that object.

Remarks:

Conforming to POSIX 1003.1-2001 (pthread_condattr_destroy).

a.3.3.7 int r2g_condattr_getpshared (const r2g_condattr_t ∗ attr, int ∗ pshared)

Get pshared attribute of condition variable attribute object.

Parameters:

attr condition variable attribute object
pshared buffer for the condition variable pshared attribute value

Returns:

On success, 0 is returned; on error, an error number is returned.

Return values:

EINVAL Invalid attribute pointer

This function returns the pshared attribute of the condition variable attribute
object attr in the buffer pointed to by pshared.

Remarks:

Conforming to POSIX 1003.1-2001 (pthread_condattr_getpshared).



48 appendix : r²g api

a.3.3.8 int r2g_condattr_init (r2g_condattr_t ∗ attr)

Initialize a condition variable attribute object.

Parameters:

attr cond attribute object

Returns:

On success, 0 is returned; on error, an error number is returned.

This function initializes the condition variable attribute object pointed to by attr
with default attribute values. After this call, individual attributes of the object
can be set using various related functions, and then the object can be used in
one or more r2g_cond_init() calls that create condition variables.

When a condition variable attribute object is no longer required, it should be
destroyed using the r2g_mutexattr_destroy() function.

Remarks:

Conforming to POSIX 1003.1-2001 (pthread_condattr_init).

a.3.3.9 int r2g_condattr_setpshared (r2g_condattr_t ∗ attr, int pshared)

Set pshared attribute of condition variable attribute object.

Parameters:

attr condition variable attribute object

pshared the condition variable pshared attribute value

Returns:

On success, 0 is returned; on error, an error number is returned.

Return values:

EINVAL Invalid pshared argument

EINVAL Invalid attribute pointer

This function sets the pshared attribute in the condition variable attribute object
pointed to by attr. Valid settings for pshared include:

• R2G_PROCESS_SHARED

This type of condition variable is shared between threads on different
CPU’s

• R2G_PROCESS_PRIVATE

This type of condition variable is not guaranteed to be shared between
threads on different CPU’s

R²G Default: R2G_PROCESS_SHARED

Remarks:

Conforming to POSIX 1003.1-2001 (pthread_condattr_setpshared).



A.3 synchronization primitives 49

a.3.4 Barrier

Barriers can be used to synchronize N threads. Until the N’th thread has called
r2g_barrier_wait() the other N - 1 threads are blocked.

a.3.4.1 int r2g_barrier_destroy (r2g_bar_t ∗ bar)

Free barrier resources.

Parameters:

bar Barrier object

Returns:

On success, 0 is returned; on error, an error number is returned.

This function destroys the barrier referenced by bar and releases any resources
used by the barrier.

Warning:

Destroying a barrier that other threads are currently blocked on (in r2g_-
barrier_wait()) results in undefined behavior.

Remarks:

Conforming to POSIX 1003.1-2001 (pthread_barrier_destroy).

a.3.4.2 int r2g_barrier_init (r2g_bar_t ∗ bar, uint32_t n)

Create a barrier synchronization object.

Parameters:

bar Barrier object

n Number of threads to synchronize

Returns:

On success, 0 is returned; on error, an error number is returned.

Return values:

ENOMEM Insufficient memory to allocate internal data structures

This functions initializes the barrier bar. Thereafter, exactly n - 1 threads will
block when calling r2g_barrier_wait(). When the n ’th thread calls r2g_barrier_-
wait(), all threads are unblocked.

Attempting to initialize an already initialized barrier results in undefined be-
havior.

Remarks:

This function not directly conforms to POSIX 1003.1-2001. However, it is
working in the same way as pthread_barrier_init(), but without attributes.



50 appendix : r²g api

a.3.4.3 int r2g_barrier_wait (r2g_bar_t ∗ bar)

Synchronize on a barrier.

Parameters:

bar Barrier object

Returns:

On success, 0 is returned; on error, an error number is returned.

Synchronize the calling thread on the barrier bar. The thread gets automatically
unblocked if the number of threads defined by r2g_barrier_init() have reached
this function.

Remarks:

Conforming to POSIX 1003.1-2001 (pthread_barrier_wait).

a.4 board specific r²g support routines

Most parts of R²G are platform independent and thus are only based on the
services provided by the RTEMS operating system. However, some parts are
very specific to the platform and the memory address space. Hence, such parts
are directly integrated into to board support package (BSP) of RTEMS.

This includes:

• DMA Support,

• Spinlocks,

• Idle routine, and

• Performance measurement

All those parts have to be adapted to support a new platform.

Please also note that those functions are not POSIX conform at all.

a.4.1 System Support

a.4.1.1 void∗ r2gsupp_idle (uintptr_t ignored)

Idle function.

Parameters:

ignored ignored parameter

Returns:

This function never returns.

This function implements the board specific idle routine. In case of CoMET the
CPU enters a energy safe execution mode.



A.4 board specific r²g support routines 51

a.4.2 Basic Synchronization

Every system with concurrently running threads or processes needs a way to
synchronize. To implement such a synchronization at least one atomic opera-
tion is required. Those operations can be directly implemented in the instruc-
tion set architecture of the processor, like test-and-set, or implemented trough
special devices.

In case of CoMET the instructions ’ldrex’ and ’strex’ are used. They implement
atomic load and store to a memory cell.

The MPARM implements a special semaphore device which is used for this
purpose.

a.4.2.1 void r2g_spin_lock (r2g_spinlock_t ∗ lock)

Close a spinlock.

Parameters:

spinlock reference

This function locks the spinlock represented by lock. If the lock is available the
function returns, immediately. If the lock currently is closed the call spins until
the lock gets available

a.4.2.2 int r2g_spin_trylock (r2g_spinlock_t ∗ lock)

Try to close a spinlock.

Parameters:

spinlock reference

Returns:

Returns 0 on success; on error, -1 is returned and errno is set to indicate
the error.

Return values:

EAGAIN The operation could not be performed without blocking

This function is the same as r2g_spin_lock(), except that if the locking cannot
be immediately performed, then call returns an error (errno set to EAGAIN)
instead of spinning.

a.4.2.3 void r2g_spin_unlock (r2g_spinlock_t ∗ lock)

Open the spinlock.

Parameters:

spinlock reference



52 appendix : r²g api

This function unlocks the spinlock represented by lock.

a.4.3 Performance Measurement

It is very important to measure the performance of an embedded system.
Hence, the designer can compare different implementations regarding energy
efficiency and timing.

The start/stop functions in this module trigger the measurement of the simula-
tor.

a.4.3.1 void multi_start_metric (void)

This function starts the measurement of the executed instructions on the calling
CPU. When called multiple times, only the first call will start the measurement.

a.4.3.2 void multi_stop_metric (void)

This function stops the measurement of the executed instructions on the calling
CPU. The values are printed with special simulator commands.

The measurement is only stopped, when calling this function exact the same
amount as multi_start_metric(). This behavior enables measurement in recur-
sive functions and in loops.

a.4.3.3 unsigned int start_energy_metric (void)

This function starts the measurement of the energy consummation of the sys-
tem.

Note:

Only implemented on CoMET. For MPARM this is equal to multi_start_-
metric()

a.4.3.4 unsigned int stop_energy_metric (void)

This function stops the measurement of the energy consummation of the sys-
tem. To retrieve the energy values, you have to look at the simulator log file
respectively the simulator output.

Note:

Only implemented on CoMET. For MPARM this is equal to multi_stop_-
metric()



B I B L I O G R A P H Y

[1] MNEMEE – Memory maNagEMEnt technology for adaptive and efficient
design of Embedded systems. http://www.mnemee.org/.

[2] Daniel Cordes, Peter Marwedel, and Arindam Mallik. Automatic Paral-
lelization of Embedded Software Using Hierarchical Task Graphs and Inte-
ger Linear Programming. In Proceedings of CODES+ISSS, 2010), Scottsdale
/ US, October 2010.

[3] Yiannis Iosifidis, Arindam Mallik, Stylianos Mamagkakis, Eddy De Greef,
Alexandros Bartzas, Dimitrios Soudris, and Francky Catthoor. A frame-
work for automatic parallelization, static and dynamic memory optimiza-
tion in MPSoC platforms. In Proceedings of the 47th ACM/IEEE Design Au-
tomation Conference – DAC, pages 549–554, Anaheim (California) / USA,
June 2010.

[4] Christos Baloukas, Lazaros Papadopoulos, Dimitrios Soudris, Sander
Stuijk, Olivera Jovanovic, Florian Schmoll, Daniel Cordes, Robert Pyka,
Arindam Mallik, Stylianos Mamagkakis, François Capman, Séverin Collet,
Nikolaos Mitas, and Dimitrios Kritharidis. Mapping embedded applica-
tions on MPSoCs: the MNEMEE approach. In Proceedings of the Annual
Symposium on VLSI, Lixouri, Kefalonia, Greece, July 2010.

[5] Christos Baloukas, Lazaros Papadopoulos, Robert Pyka, Dimitrios
Soudris, and Peter Marwedel. An Automatic Framework for Dynamic
Data Structures Optimization in C. In Proceedings of the 18th international
conference on Very Large Scale Integration (VLSI) System-on-Chip (SoC), VLSI-
SOC 2010, Madrid, Spain, September 2010.

[6] ArtistDesign Network of Excellence on Embedded Systems Design. http:
//www.artist-embedded.org/.

[7] Arindam Mallik, Maryse Wouters, Peter Lemmens, Eddy De Greef, and
Thomas J. Ashby. Source-to-source optimizations of statically allocated
data mapping on MPSoC platforms. In Poster at MPSoC Workshop Rheinfels,
Rheinfels / Germany, 2010.

[8] Luca Benini, Davide Bertozzi, Alessandro Bogliolo, Francesco Menichelli,
and Mauro Olivieri. MPARM: Exploring the Multi-Processor SoC Design
Space with SystemC. The Journal of VLSI Signal Processing, 41:169–182,
2005.

[9] Comet simulator. http://www.synopsys.com/Community/

Interoperability/SystemLevelCatalyst/Pages/MVaST.aspx.

[10] Michael Dales. Swarm 0.44 documentation, 2000. http://www.cl.cam.ac.
uk/~mwd24/phd/swarm.html.

[11] Jennifer Eyre and Jeff Bier. Infineon’s TriCore Tackels DSP. Microprocessor
Report, 13.

53

http://www.mnemee.org/
http://www.artist-embedded.org/
http://www.artist-embedded.org/
http://www.synopsys.com/Community/Interoperability/SystemLevelCatalyst/Pages/MVaST.aspx
http://www.synopsys.com/Community/Interoperability/SystemLevelCatalyst/Pages/MVaST.aspx
http://www.cl.cam.ac.uk/~mwd24/phd/swarm.html
http://www.cl.cam.ac.uk/~mwd24/phd/swarm.html


54 Bibliography

[12] Eclipse ide. http://www.eclipse.org/.

[13] ARM 1176 CPU. http://arm.com/products/processors/classic/

arm11/.

[14] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and
D. Shippy. Introduction to the cell multiprocessor. IBM J. Res. Dev.,
49(4/5):589–604, 2005.

[15] ICD-C Compiler framework. http://www.icd.de/es/icd-c/.

[16] ICD - Informatik Centrum Dortmund. http://www.icd.de.

[17] IMEC - Interuniversity Microelectronics Centre. http://www.imec.be.

[18] Andreas Heinig. R²G home page. http://www.andreasheinig.de/

permalink/10121/.

http://www.eclipse.org/
http://arm.com/products/processors/classic/arm11/
http://arm.com/products/processors/classic/arm11/
http://www.icd.de/es/icd-c/
http://www.icd.de
http://www.imec.be
http://www.andreasheinig.de/permalink/10121/
http://www.andreasheinig.de/permalink/10121/

	Abstract
	Acknowledgments
	Contents
	1 Introduction
	2 Platforms
	2.1 MPARM
	2.2 CoMET
	2.2.1 About CoMET
	2.2.2 Platform


	3 RTEMS
	3.1 RTEMS Architecture
	3.2 BSP - Board Support Package
	3.3 What we have achieved so far (and what not)

	4 R²G
	4.1 Overview
	4.2 Remote Thread Spawning
	4.3 Synchronization
	4.4 RTLib Porting

	5 Conclusion
	A Appendix: R²G API
	A.1 Thread Subsystem
	A.1.1 Thread Operations
	A.1.2 Thread Attributes
	A.1.3 Thread Specific Keys

	A.2 Memory Subsystem
	A.2.1 Dynamic Shared Memory Allocation
	A.2.2 DMA Transfer Engine

	A.3 Synchronization Primitives
	A.3.1 Semaphore
	A.3.2 Mutex
	A.3.3 Condition Variable
	A.3.4 Barrier

	A.4 Board specific R²G support routines
	A.4.1 System Support
	A.4.2 Basic Synchronization
	A.4.3 Performance Measurement



