
Generalizing the SPUFS concept – a case study towards
a common accelerator interface

Andreas Heinig1, René Oertel1,2, Jochen Strunk1, Wolfgang Rehm1, Heiko Joerg Schick2

1Chemnitz University of Technology, Germany 2IBM Deutschland Entwicklung GmbH, Germany
{heandr,oere,sjoc,rehm}@cs.tu-chemnitz.de {oertelr,schickhj}@de.ibm.com

This research is supported by the Center for Advanced Studies (CAS) of the IBM Böblingen Laboratory, Germany in collaboration with the NICOLL Project.

Abstract

The development of specialized application accel-
erators is happening today. However, they do not
share a common attach point, and have no common
architecture or programing model. A framework
that economically and efficiently enables specialized
acceleration is highly desirable.

In this work we propose a generic interface con-
cept called ”ACCFS” for integrating application
accelerators into Linux-based platforms. The idea is
to extend the programing model chosen by the Linux
for Cell/B.E. team. On the Cell/B.E. multiple indepen-
dent vector processors called Synergistic Processing
Units (SPUs) are built around a 64-bit PowerPC
core (PPE). The programing model is to create a
virtual file system (VFS) to export the functionality of
the SPUs to the user space via a file interface, they
called it ”SPUFS”. Against other solutions such as
using character devices or introducing a new process
space the VFS interface uses common file system calls
and provides an economic and efficient access to the
accelerator units, the SPUs. Together with this concept
and the experiences from an intermediate step called
”RSPUFS” we introduce the first approaches towards
a common accelerator file system (ACCFS).

1 Introduction

Utilizing accelerators in the field of research, the fi-
nancial sector, the industry or the embedded market is
a common technique to overcome limitations of stan-
dard processors (CPUs). The requirements can vary
from overall floating point peak performance, run time,
power consumption, power efficiency, form factor to
real-time behavior. Application specific accelerators
such as GPUs, FPGAs, DSPs and specialized streaming
engines for encoding and decoding are used to satisfy
these demands. Almost all of these accelerators are part
of a bigger computing system, i.e. they are attached into

computing nodes using pluggable add-in cards, socket
add-in modules or other internal or external connections
to processor and peripheral buses.

What these systems have in common with acceler-
ators is the need of integrating the hardware into the
operating system and providing an API for application
software. Today each vendor provides its proprietary
accelerator specific device driver and optimized appli-
cation library.

A common, hardware independent framework and in-
terface tightly integrating distinct accelerators into op-
erating systems is missing so far. A hardware indepen-
dent solution offerers the chance to simplify the use of
different accelerators at the same time, switching from
one accelerator to another and ease the development of
accelerating libraries.

2 Related Work

With the growing field of accelerator appliances, dif-
ferent kinds of problems appear when using acceler-
ators for offloading computational intensive calcula-
tions. Several well-known companies and organizations
take approaches to fulfill requirements both of appli-
cation and operating systems programmer. These ap-
proaches deal with different layers of the abstraction of
the bare metal. We distinguish between the program-
ming model, the libraries usable by the application pro-
grammer, the management layer in the operating system
and the extensions of the hardware.

The representatives for the programming model are
for example the Mitrion-C [8] and the StreamIT [12]
programming languages. Their task is to provide an ac-
celerator aware programming environment which deals
with the translation of application code to hardware de-
pendent code without the need of the programmer to
have a deeper knowledge of the underlying hardware.
These environments focus on the usage of the accelera-
tors, e.g. FPGAs, but not on their management in par-
ticular.

There are already some libraries, which provide man-

...

p
ro

c

e
x
t2

Character / Network / Block

device drivers

d
e
v
ic

e
 h

a
n
d
le

r

A
C

C
 *

*

d
e
v
ic

e
 h

a
n
d
le

r

A
C

C
 *

*

d
e
v
ic

e
 h

a
n
d
le

r

A
C

C
 *

*...

p
ro

c

e
x
t2

Character / Network / Block

device drivers

PPE
S

P

E
CPU

A

C

C

A

C

C

A

C

C
CPU

S

P

E

S

P

E

S

P

E

S

P

E

S

P

E

libspe *

application

system call interface

libfs

spufs *

application

libacc **

system call interface

libfs

accfs **

Cell/B.E. ACCelerator: e.g. FPGA

... ...

H
a
rd

w
a
re

 L
e
v
e
l

U
s
e
r

L
e
v
e
l

K
e
rn

e
l
L
e
v
e
l

CPU: case study Opteron

...

intermediate generalization step target: ACCFS concept

RSPUFS concept

starting point: SPUFS concept

PPE

Figure 1: Extending the SPUFS * concept to ACCFS **

agement and control facilities of accelerator entities.
The IBM SPE Runtime Management Library [6], the
Intel QuickAssist Technology Accelerator Abstraction
Layer (AAL) [4] and the proposal of the OpenFPGA
GenAPI [2] are some examples of such libraries. Their
objective is to provide a hardware independent and con-
sistent layer for application programmer, which saves
the user application development investments and eases
the porting of already available code. The NVIDIA
CUDA

TM
[9] development environment is a special case

of an accelerator framework, because it coalesces a
GPU specific compiler, application libraries and a run-
time driver. Thus it provides a multilayer solution for
NVIDIA GPU accelerators.

At the operating system layer there are well estab-
lished and shortly introduced concepts for managing
similar hardware entities. Typical examples are the
management of block devices or WLAN host adapters
(MAC80211, [11]) in the Linux operating system, but
there is no generic accelerator framework, yet. The ap-
proach is to define a common set of functions needed
for a uniform access which is provided by the low-level
device drivers and registered by them in the framework.

Accelerator specific hardware extensions [7] which
focus on the tightly coupling of such computational of-
fload engines are for example the Intel Geneseo Tech-

nology [5], the AMD Torrenza initiative [1] and the
PCI-SIG PCI Express I/O Virtualization [10] drafts.
The challenge on these extensions is to provide low-
level enhancements, which are requested of higher lay-
ers of our abstraction model, e.g. the support of virtual-
ization and atomic operations.

3 Basic Idea
We have had the idea to check out whether the vir-
tual file system approach of SPUFS could be adopted
successfully to a more generic coupling of a CPU and
accelerators. Therefore we have chosen a step-by-step
porting. In a first step we replaced the PPE by a com-
modity main stream CPU – in that case AMD Opteron.
A further step will be the substitution of the SPUs by
other specialized accelerators such as FPGAs and the
like.

Figure 1 illustrates the stepwise generalization start-
ing with the SPUFS concept followed by an interme-
diate step (”RSPUFS”) that finally leads to the ACCFS
concept.

GENERALIZING THE SPUFS CONCEPT – A CASE STUDY TOWARDS A COMMON ACCELERATOR INTERFACE

2

A. HEINIG ET AL.

4 Cell Broadband Engine Archi-
tecture

The Cell Broadband Engine (Cell/B.E. or Cell) Archi-
tecture was developed in corporation of Sony, Toshiba
and IBM (”STI”). The goal was to develop an architec-
ture for the next generation of entertainment devices, es-
pecially the PlayStation 3 from Sony. In order to extend
the applicability of the Cell and to start a developing
community, an open source development environment
based on GNU/Linux has been released.

The Cell Processor consists of one dual-threaded,
dual-issue, 64-bit Power processor element (PPE) com-
pliant to the Power Architecture. The Power Archi-
tecture is extended with eight cooperative offload pro-
cessors called ”Synergistic Processor Elements” (SPE).
Additional one memory controller and two interface
controllers are located on the die. Figure 2 shows a
complete picture about the Cell. The components are
explained on the following pages.

MFC

LS

SXU

SPU

SPE

MFC

LS

SXU

SPU

SPE

MFC

LS

SXU

SPU

SPE

MFC

LS

SXU

SPU

SPE

MFC

LS

SXU

SPU

SPE

MFC

LS

SXU

SPU

SPE

MFC

LS

SXU

SPU

SPE

MFC

LS

SXU

SPU

SPE

ON−chip coherent bus (EIB)

L2

L1 PXU

PPU

PPE bus interface controller

Rambus
FlexIO

memory controller

Dual Rambus
XDR

Figure 2: Cell/B.E. Block Diagram

Power Processor Element
The PPE consists of a 512 KiB Level-2-Cache and the
Power Processor Unit (PPU). Among the Power Execu-
tion Unit (PXU) the PPU contains a 32 KiB Level-1-
Cache.

The PXU is based on the Power Architecture execut-
ing two threads in parallel. Equipped with an Altivec
unit, the PXU is able to process two floating point op-
erations with double or eight floating point operations
with single precision at the same time. The instruction
set architecture (ISA) is nearly the same as on other 64-
Bit PowerPC based processors. Thus the GNU/Linux
operating system can be executed unchanged on the
PPE. Only modifications on the device drivers were nec-
essary to support the components of the main board.

Synergistic Processing Element
The Synergistic Execution Unit (SXU) is similar to a
RISC (Reduced Instruction Set Computing). The reg-
ister file contains 128 registers of 128 bit. The ISA
includes SIMD (Single Instruction Multiple Data) op-
erations for Integer, Float and Double. Next to the SXU
a 256 KiB local-store (LS) is integrated into the SPU
(Synergistic Processing Unit). The SXU always op-
erates on this local-store. The program code and all
(local) data must fit into the LS. To access addresses
outside the LS the DMA engine, represented by the
Memory Flow Controller (MFS), has to be used. The
MFC processes the DMA asynchronously to the SPU-
program execution.

All DMA commands are coherent and use the same
protections and translations provided by the page and
segment tables of the Power Architecture. Addresses
can be passed between the PPE and SPE, because these
tables are equal for both. The operating system is able
to configure shared memory and is able to manage all
resources in the system in a consistent manner.

The SPE is the acceleration unit of the Cell system.
The most parts of the SPE are exported via the memory.
Thus it is possible to map these into the application.

Memory Flow Controller
DMA is the only way for the SPU (Synergistic Pro-
cessing Unit) to communicate with the rest of the Cell.
Therefore the MFC is integrated into each SPE. There
are three ways to program the MFC:

1. Executing instructions on the SXU, inserting
DMA commands in the queue

2. Issuing a ”DMA list” command with a prepared
(scatter-gather) list on the local-store

3. Insertion of a DMA command in the queue by an-
other processor element (with the appropriate priv-
ilege).

The maximum outstanding DMA commands are 16.
The MFS is mapped into the Cell address space, too.

Memory and Interface Controller
On the die a Memory Controller and a Interface Con-
troller is located, too. The Interface Controller provides
a high bandwidth flexible I/O interface (FlexIO) and is
splittable into two logical controllers.

Element Interconnect Bus
The twelve elements (1xPPE, 8xSPE, 1xMC, 2xIC) are
connected with a ring bus called ”Element Interconnect
Bus” (EIB). This bus consists of one ring with four uni-
directional channels, two have clockwise direction and

GENERALIZING THE SPUFS CONCEPT – A CASE STUDY TOWARDS A COMMON ACCELERATOR INTERFACE

3

A. HEINIG ET AL.

two have counter-clockwise direction. Each channel is
16 Byte wide and can handle a maximum of three trans-
actions synchronously.

5 SPUFS

The operating system is running on the PPE. To include
also the SPE in the Linux environment the Synergistic
Processing Unit File System (SPUFS) is used. SPUFS
is based on two concepts: virtualization of the SPE
and virtual file system context access.

5.1 Virtualization

Virtualization is necessary to avoid resource conflicts
on a multi-user system, when multiple applications are
trying to acquire the SPEs.

SPUFS manages contexts of virtual SPEs. A context
contains all data for suspending and resuming SPU pro-
gram execution, like the register file, local store or the
MFC status. The context gets bounded on a physical
SPE by a scheduler inside SPUFS. For the context ac-
cess the following methods are conceivable:

1. Character Devices

A character device is a simple way to enable appli-
cations access to hardware resources. Each SPU
would be represented as a character device. For
controlling only read, write and ioctl sys-
tem calls are required.

However, it will be hard for an application to find
unused SPUs if each is represented as a single de-
vice. Furthermore it is very difficult to virtualize
the SPUs on a multi-user system.

2. System Calls

With the definition of a new set of system calls
and a new thread space, it is possible to abstract
the physical SPU with ”SPU process”. The advan-
tage is, that the kernel can schedule these SPU pro-
cesses and every user is able to create them without
interfering with each other.

A possible high number of new system calls is
needed to provide the necessary functionality. To
manage another type of processes, kernel infras-
tructure has to be duplicated. Thus changes or
an alternative version of system calls manipulat-
ing the process-space like kill or ptrace are
required.

3. Virtual File System

Like the system call approach, a virtual file sys-
tem (VFS) does not require any device drivers. All
resources are stored instead in the main memory.

Character / Network / Block

device drivers

application

system call interface

ext 2

libfs

proc spufs...

H
a
rd

w
a
re

 L
e
v
e
l

K
e
rn

e
l
L
e
v
e
l

U
s
e
r

L
e
v
e
l

libspe

Hardware
Cell/B.E

Figure 3: SPUFS Model

For the communication between user- and kernel-
space, system calls like open, read, write or
mmap are used.

5.2 Virtual File System
Because of the disadvantages of character devices or the
new thread space, the Linux Cell/B.E. team has decided
to implement a virtual file system. Every context entry
is accessible thought a single file with the normal file
system calls. The integration into the Linux kernel is
shown in Figure 3. SPUFS is managed under ”libfs”,
the VFS implementation of Linux, like any other file
system. Additionally to the file system calls two new
system calls are introduced with SPUFS (the left side of
the ”spufs”-box):

1. sys spu create
The first step for applications is to create a context
for each SPE they require. Creating contexts with
the system call spu create is the only operation
available on the root of the file system.

This system call returns the handle to the context
directory. When closing this handle, the context
gets destroyed.

2. sys spu run
After loading the program into the local-store
memory the spu run system call executes the
SPU code. The execution is synchronous. Thus
the calling thread is blocked, while the SPU code
is running. Returning can have the reason, that the
SPU program is finished or an error is occurred.

GENERALIZING THE SPUFS CONCEPT – A CASE STUDY TOWARDS A COMMON ACCELERATOR INTERFACE

4

A. HEINIG ET AL.

Creating the context results in a new directory under
the SPUFS root. Operations on the files inside the con-
text will directly modify the physical SPE if the context
is bounded, otherwise the context safe area inside the
main memory. In Table 1 some files are shown. The

File Perm Description
decr r w SPU Decrementer
decr status r w decrementer status
event mask r w event mask for SPU inter-

rupts
fpcr r w floating point status and

control register
mbox r - the first SPU to CPU com-

munication mailbox
mbox stat r - length of the queue
ibox r - the second SPU to CPU

communication mailbox
ibox stat r - length of the queue
wbox - w CPU to SPU communica-

tion mailbox
wbox stat r - length of the queue
mem r w local-store memory
npc r w next program counter
psmap r w problem state area
regs r w register file
signal1 r w signal channel 1
signal1 type r w behavior of the signal1 (re-

place or ”OR”)
signal2 r w signal channel 2
signal2 type r w behavior of the signal2
srr0 r w interrupt return address

register

Table 1: The SPUFS context (part)

most important are:

• regs
The register file of the SPU is accessible via this
entry. Any operation causes the SPE making a
complete halt. But normally there is no need to
access the registers directly during the program ex-
ecution.

• mem
The whole local-store is represented by the ”mem”
file. Simple I/O system calls can be used to place
data into it.

It is possible to map the local-store into the ad-
dress space of the application by calling mmap.
The mapping has the advantage, that the operating
system is not involved by each access.

• wbox / mbox / ibox
The Cell supports a ”mailbox”-mechanism where
short messages (4 byte) can be transfered between
SPE and PPE.

• wbox stat / mbox stat / ibox stat
These three files contain the length of the current
mailbox queue: how many words can be written to
wbox or read from mbox or ibox without blocking.

• psmap
The whole problem-state area is mappable via
mmap the ”psmap” file. The problem-state area is
the memory representation of special parts of the
SPE:

– MFC DMA setup and status registers

– PPU and SPE mailbox registers

– SPE run control and status register

– SPE signal notification registers

– SPE next program counter register

5.3 Runtime Management Library
To provide a further abstraction to the application, a
SPE Runtime Management Library called ”libspe” is
provided. Libspe is a user-space library, it does not
manage physical SPEs. Hardware resources can not
be manipulated directly. The library requests SPE re-
sources from the operating system, taking no concern
about how the operating system implements this.

Libspe hides the VFS interface to the application,
but in most cases this library is a wrapper around the
SPUFS. The library provides the funtions:

• SPE context management

• CPU information

• SPE program image handling

• SPE run control

• SPE event handling

• MFC proxy command

• MFC multi-source synchronization

• MFC proxy tag-group completion

• SPE mailbox

• SPE signal notification

• Direct SPE access

• PPE-assisted library calls

GENERALIZING THE SPUFS CONCEPT – A CASE STUDY TOWARDS A COMMON ACCELERATOR INTERFACE

5

A. HEINIG ET AL.

ext 2

libfs

proc... ext 2

libfs

proc...

U
s
e

r
L

e
v
e

l
K

e
rn

e
l
L

e
v
e

l
H

a
rd

w
a

re
 L

e
v
e

l

n
e

tw
o

rk
s
ta

c
k

Hardware

spufs

Hardware
Opteron

system call interface

application

n
e

tw
o

rk
s
ta

c
k

rspufs

Cell/B.E.

rspufsd

dedicated link (Ethernet, TCP/IP)

system call interface

(iii)

(iii)

(iii)

(ii)

(ii)

(ii)

(ii)

(ii)

(i)

(i)

libspe

Character / Network / Block

device drivers

Character / Network / Block

device drivers

Figure 4: RSPUFS Model

6 RSPUFS

The first step towards a common accelerator file system
was to prove that the PPE can be replaced by another
processor. In our case we chose an AMD Opteron. As
there was no hardware solution available that enables
direct coupling of an Opteron processor with SPUs we
use an Ethernet-based coupling as intermediate step. In
conjunction with our Remote SPUFS (RSPUFS) imple-
mentation a direct coupling could be emulated.

RSPUFS consists of two parts: A daemon running on
the PPE of the Cell with the name ”rspufsd” and a vir-
tual file system driver called ”rspufs”1 in the Opteron
Linux kernel. These components are displayed in Fig-
ure 4. A complete Linux system is running on the
Opteron as well as on the Cell. Both are connected
through the Ethernet link. It is possible to use the Cell
in the normal way. The only difference is a further
user-space process, the rspufsd, which uses the unmod-
ified SPUFS. The reason for the decision not modifying
SPUFS on the Cell side is the better assignment of er-
rors, which occur during the development. All errors
are based on the daemon, which is very easy to debug,
because it is running in the user-space, where normal
debuggers are working.

On the Opteron side, the spufs driver is exchanged
with rspufs, which only provides the interface. Any re-
source request is transmitted to the daemon on the Cell.

The parts of RSPUFS are not just two program
pieces, but a differentiation of the functionality. The
rspufsd implements the hardware access (bottom half)
to the SPEs and the rspufs kernel driver provides the

1 According to ”spufs”, ”rspufs” in lower-case letters means al-
ways the Linux kernel driver.

user interface (top half).

6.1 The Cell Part: rspufsd
The whole RSPUFS concept works like a proxy. In Fig-
ure 4 the application requests a resource from the rspufs
kernel driver (i), which translates this to a network pack-
age and send it to the Cell (ii). The rspufsd decodes the
package and reexecute the request on the Cell (iii). The
results are transmitted back to the Opteron and the ap-
plication (not displayed in the figure).

The main tasks of rspufsd could be described as: pro-
vide a service infrastructure and handle SPU requests.

6.2 The Opteron Part: rspufs
The main task of the top half is to provide the same
behavior as SPUFS on the Cell.

In contrast to the daemon, which can use the Cell
like any other application, the only way for the Opteron
to use the SPEs is through the provided services from
rspufsd.

However, the big challenge is the different byte or-
der of both systems. The Opteron has Little- and the
Cell Big-endian. Thus the bytes have to be swapped af-
ter receiving and before sending inside the kernel driver.
Because the kernel cannot make any assumptions on the
type of the data the application wants to access, the ap-
plication has to order the bytes itself.

Another challenge was the unavailable RDMA (Re-
mote Direct Memory Access) capable interconnection.
The possibility to map the local-store into the local ad-
dress space is very important, because the libspe uses
this feature extensively. It is not only desirable to mem-
ory map the local-store, but the XDR main memory, too.

GENERALIZING THE SPUFS CONCEPT – A CASE STUDY TOWARDS A COMMON ACCELERATOR INTERFACE

6

A. HEINIG ET AL.

This is necessary to make the operands, for example a
huge matrix, accessible through the Cell. With TCP/IP
no hardware support is available to provide this func-
tionality on the Opteron. Thus it has to be emulated in
software by RSPUFS.

The software emulation results on some changes on
the VFS interface:

• mem

The usage is exactly the same as in SPUFS, but
the semantics have changed. First there is no
coherency of the mapping. That means, if the
Opteron is writing on the same local-store region
as the Cell, the next write back will overwrite all
the changes made by the Cell. Second, the syn-
chronization of the memory happens implicitly be-
fore each spu run or when accessing a page dif-
ferent the current one.

• xdr

After opening the ”xdr” entry, it is possible to
mmap it in shared mode into the application ad-
dress space. With the size parameter of this system
call, the amount of memory can be set. There is no
limitation, but any request higher than the physical
amount of memory on the Cell results in swapping.

Unlike the implicit synchronization of the local-
store mapping, the application can explicitly syn-
chronize the xdr-mapping.

The runtime management library was also extended to
support the new interface.

For a deeper look on the internals of RSPUFS
please refer [3].

6.3 Results

We could prove that it is possible to cope with problems
like byte ordering (endianes) and direct memory access
(even emulated) without modifying the SPUFS concept.

Furthermore the RSPUFS implementation shows a
way for integrating accelerators other than SPUs by
splitting the functionality into two parts: one abstract-
ing the user interface (rspufs) and one integrating the ac-
celeration hardware (rspufsd). We propose exactly this
structure for the ACCFS concept.

7 ACCFS
With ACCFS we try to combine the experiences gath-
ered from SPUFS and RSPUFS. From SPUFS we use
the concepts virtualization and the VFS approach and
from RSPUFS the separation of the functionalities.
Thus ACCFS consits of two parts (confer Figure 5):

1. Top half: accfs
The Linux kernel driver of ACCFS is called ”ac-
cfs”. Its main task is to provide the user interface
(VFS) and the vendor interface.

2. Bottom half: device handler
Every vendor can integrate there specific device
driver into the ACCFS frame work by writing spe-
cial device handlers.

d
e

v
ic

e
 h

a
n

d
le

r

A
C

C

d
e

v
ic

e
 h

a
n

d
le

r

A
C

C

d
e

v
ic

e
 h

a
n

d
le

r

A
C

C

...
p

ro
c

e
x
t2

Character / Network / Block

device drivers

CPU
A

C

C

A

C

C

A

C

C

H
a

rd
w

a
re

 L
e

v
e

l
U

s
e

r
L

e
v
e

l
K

e
rn

e
l
L

e
v
e

l

application

system call interface

libfs

accfs

ACCelerator: e.g. FPGA

...

libacc

"V
F

S
 i
n

te
rf

a
c
e

"
"V

e
n

d
o

r
In

te
rf

a
c
e

"

Figure 5: ACCFS Model

7.1 VFS interface
Like SPUFS the user interface consists of the VFS
part and the two system calls sys acc create and
sys acc run. These system calls have the same se-
mantics as the SPUFS ones, except an additional pa-
rameter specifying the accelerator type the context has
to create for.

In contrast to RSPUFS, where the VFS interface was
adopted nearly unchanged, ACCFS uses other file sys-

GENERALIZING THE SPUFS CONCEPT – A CASE STUDY TOWARDS A COMMON ACCELERATOR INTERFACE

7

A. HEINIG ET AL.

File Perm Description
regs r w register file
message r w message interface between

CPU and accelerator
memory/ r w folder containing all ex-

ported accelerator memory
regions

semaphore/ r w folder which contains
semaphores as basic
synchronization primitives

Table 2: The current ACCFS context

tem entries. The current set is shown in Table 2. This
set is our first proposal for the pretty basic things. The
entries are described detailed in the following points:

• regs

The register file of the accelerator is represented
in this entry. Allowed operations are read and
write.

• messages

Short messages could be send (write) or received
(read) with this entry. These operations are gen-
erally blocking, except messages is opened in non-
blocking mode.

• memory/

In contrast to the SPUFS context entries, the AC-
CFS context has a folder to represent the exported
memory. In case of RSPUFS the entries would
be ”ls” (for the local-store) and ”xdr” for the
XDR memory mapping support. An FPGA maybe
exports the connected DRAM or a configuration
memory here.

A memory entry supports read, write and
mmap.

• semaphore/

For the synchronization we plan to implement
a semaphore mechanism, where the accelerator
as well as the main application can access the
semaphore with atomic operations. Possible oper-
ations within this directory are create, unlink,
read and write.

Context entries will be only available if the accelerator
supports the corresponding feature.

7.2 Vendor Interface
Initially is no accelerator available when ”accfs” is
loaded into the Linux kernel. To use an accelerator the
vendor specific driver handler has to be loaded (we call

it register). For example, the Cell will be supported by
the RSPU vendor driver.

The vendor interface consists of the two functions
accfs register and accfs unregister.

1. accfs register
The parameter of this function is a pointer to the
accfs vendor structure as shown in Figure 6.

struct a c c f s v e n d o r
{

i n t a c c e l e r a t o r i d ;
i n t (∗ c r e a t e) (. . .) ;
i n t (∗ d e s t r o y) (. . .) ;
i n t (∗ run) (. . .) ;

i n t (∗ s e m c r e a t e) (. . .) ;
i n t (∗ s e m d e l e t e) (. . .) ;
i n t (∗ s e m w r i t e) (. . .) ;
i n t (∗ sem read) (. . .) ;

s i z e t (∗message send) (. . .) ;
s i z e t (∗m e s s a g e r e c v) (. . .) ;

i n t (∗memory read) (. . .) ;
i n t (∗memory wri te) (. . .) ;
i n t (∗memory sync) (. . .) ;

} ;

Figure 6: struct accfs vendor

The accelerator identifier (accelerator id) is
used to address the accelerator from the user
space. The accelerator type parameter of the
sys acc create is exactly this identifier.

Next to the accelerator identifier this structure con-
tains the addresses of callback functions for con-
text creation, context destroying, executing the
program code, handle semaphores, messages and
memory operations. The vendor has to fill in the
creation, destroying and run callback. Any other
entry can be NULL if the accelerator do not sup-
port the operation. In this case the VFS interface
will not display the appropriate entries.

2. accfs unregister
If the device handler gets unloaded, it will have to
call the unregister function, which blocks until the
accelerator is not used anymore.

7.3 Device Handler
Above we have seen the tasks of the ”accfs” component,
which handles the VFS stuff, but not the virtualization
of the accelerator. This has the reason, that the VFS
part is too generic to know all portions of the accelerator
needed to safe before loading another context.

Thus the device handler has to provide the virtualiza-
tion by itself. If the accelerator or the device handler do
not support virtualization, only the physical amount of
accelerator units will be bound to contexts via the cre-
ate callback (confer Figure 6). Any further request has
to be quit with the -EBUSY or -EAGAIN error code.

GENERALIZING THE SPUFS CONCEPT – A CASE STUDY TOWARDS A COMMON ACCELERATOR INTERFACE

8

A. HEINIG ET AL.

Of cause, the other task of the device handler is to
manage the supported accelerators. This may include
establish the interconnection or configure memory map-
pings.

7.4 Further Work
Currently we are implementing and extending the pre-
viously mentioned interfaces: The Vendor interface is
nearly completed and the VFS supports the first basic
operations like creating contexts and writing through
the register file.

On the device handler side we have implemented
a dummy device handler for the demonstration of the
ACCFS interfaces and as reference implementation for
other handlers.

The next steps are:

• finish the interface implementation of ACCFS

• porting RSPUFS to an ACCFS device handler for
SPEs

• implementing device handlers for the first acceler-
ators other than Cell

8 Conclusion
We propose a hardware independent framework, which
supports multiple types of accelerators obsoleting ven-
dor specific interfaces. It is based on the well-know op-
erating system functionality like the VFS infrastructure
of the Linux kernel, which enables concurrent access
and enforces the compliance with access rights.

We have analyzed several frameworks, concepts and
environments, which are available at the moment, for
the integration of functional offload engines e.g. GPG-
PUs, FPGAs and the Cell/B.E. SPUs.

SPUFS was chosen as the basis for our concept. We
have analyzed its special integration in the Linux op-
erating system in detail to understand the requirements,
which led to the approach of the integration via the VFS.

The further step was the extension to modularity.
This provides the separation of hardware specific parts
(i.e. initialization and register access) and the manage-
ment component (i.e. administration of different accel-
erators from a single point).

Afterwards, the concepts of the (R)SPUFS were ex-
trapolated to a more generic and common interface,
which is able to handle the different types of acceler-
ators regardless of their unique architecture or function-
ality.

Finally, our ACCFS framework provides a superset
of the current established interfaces. On the one hand
ACCFS ease the development for hardware vendors and
application library programmers, and on the other it

does not restrict special properties of a single type of
accelerator. Vendor device driver must only provide a
base for the virtual file system by implementing prede-
fined interfaces and need not worry about the manage-
ability of their hardware. They only need to make avail-
able the lowest level of abstraction upwards to the oper-
ating system. Application library programmer are now
able to use a generalized hardware interface, which en-
ables the usage of different kinds of accelerators. They
need not pay attention to restrictions or peculiarities of
a particular accelerator.

References
[1] Advanced Micro Devices, Inc. AMD Torrenza

Initiative. http://enterprise.amd.com/us-en/AMD-
Business/Technology-Home/Torrenza.aspx.

[2] Eric Stahlberg, Daryl Popig, Debbi Ryle, Thomas
Steinke, Michael Babst, Mohamed Taher, Kelly Ander-
son. Molecular Simulations with Hardware Accelera-
tors: A Portable Interface Definition for FPGA Sup-
ported Acceleration. In Third Annual Reconfigurable
Systems Summer Institute (RSSI’07), 1205 W. Clark St.,
Urbana, Illinois, July 2007. National Center for Super-
computing Applications.

[3] Andreas Heinig. Execution of SPE code in an Opteron-
Cell/B.E. hybrid system. Diploma thesis, Chemnitz
University of Technology, 2008.

[4] Ian McCallum, Intel Corporation. Intel R© QuickAssist
Technology Accelerator Abstraction Layer (AAL),
2007. http://download.intel.com/technology/platforms/
quickassist/quickassist aal whitepaper.pdf.

[5] Intel Corporation. Intel R© Geneseo Technology
(PCI Express Technology Advancement), 2007.
http://www.intel.com/technology/pciexpress/devnet/docs/
Intel Geneseo White Paper Final.pdf.

[6] International Business Machines Corporation, Sony
Computer Entertainment Incorporated, Toshiba Corpo-
ration. SPE Runtime Management Library v2.2, Oct
2007. Cell Broadband Engine Architecture Joint Soft-
ware Reference Environment Series.

[7] Mark Hummel, Mike Krause, Dou-
glas O’Flaherty. Protocol Enhancements
for Tightly Coupled Accelerators, 2007.
http://enterprise.amd.com/Downloads/Technology/AMD-
HP-tightly-coupled-acc.pdf.

[8] Mitrionics. Mitrion Product Brief, 2007.

[9] NVIDIA. NVIDIA CUDA Compute Unified Device
Architecture Programming Guide. Technical report,
NVIDIA Corporation, Santa Clara, CA, Nov. 2007. Ver-
sion 1.1.

[10] PCI-SIG. I/O Virtualization Specification, 2007.
http://www.pcisig.com/specifications/iov/.

GENERALIZING THE SPUFS CONCEPT – A CASE STUDY TOWARDS A COMMON ACCELERATOR INTERFACE

9

A. HEINIG ET AL.

[11] Robert W. Smith. New WLAN stack for Linux
2.6.22. Heise Zeitschriften Verlag online, May 2007.
http://www.heise.de/english/newsticker/news/print/89365.

[12] William Thies, Michal Karczmarek, and Saman Ama-
rasinghe. StreamIt: A Language for Streaming Appli-
cations. In International Conference on Compiler Con-
struction, Grenoble, France, April 2002.

GENERALIZING THE SPUFS CONCEPT – A CASE STUDY TOWARDS A COMMON ACCELERATOR INTERFACE

10

A. HEINIG ET AL.

	Introduction
	Related Work
	Basic Idea
	Cell Broadband Engine Architecture
	SPUFS
	Virtualization
	Virtual File System
	Runtime Management Library

	RSPUFS
	The Cell Part: rspufsd
	The Opteron Part: rspufs
	Results

	ACCFS
	VFS interface
	Vendor Interface
	Device Handler
	Further Work

	Conclusion

