
ACCFS – Operating System Integration of

Computational Accelerators
Using a VFS Approach

Andreas Heinig1, Jochen Strunk1, Wolfgang Rehm1, and Heiko Schick2,�

1 Chemnitz University of Technology,
Str. der Nationen 62, 09126 Chemnitz, Germany

{heandr,sjoc,rehm}@cs.tu-chemnitz.de

http://www.tu-chemnitz.de/cs/ra/projects/accfs/
2 IBM Deutschland Research & Development GmbH

Schönaicher Str. 220, 71032 Böblingen, Germany
schickhj@de.ibm.com

Abstract. For a number of applications integrating specialized com-
putational accelerators into a general-purpose computing environment
yields more performance per watt and per dollar than a pure multi-core
approach. In contrast to fully application-specific hybrid solutions we
offer the advantage to maintain traditional programming models and
development environments to a certain extent. In this paper we intro-
duce an open generic operating system interface concept what we call
Accelerator File System (ACCFS) for integrating application accelera-
tors into Linux based platforms. By describing the proposed concepts
and interface we contribute to a broader discussion of this challenging
topic.

1 Introduction

The usage of reconfigurable hardware becomes more and more an important
theme in research and industry. Especially FPGAs (e.g. Xilinx Virtex, Altera
Stratix, DRC.) can speedup a variety of applications. Woods et al. [1] gained a
speedup of more than 50 compared with a CPU when accelerating a Quasi-Monte
Carlo Simulation.

An emerging type of computational accelerators are Programmable Graphic
Processors. The leading vendors for graphic boards recently presented special
techniques to accelerate applications with their chips. Massive parallel GPGPUs
(General Purpose Graphics Processing Units), like the Nvidia Tesla or the AMD
FireStream chips, enable huge speedups. For example, a ”deformable image reg-
istration” calculation reaches a speedup by factor 34 [2].

Another platform is the IBM Cell/B.E. processor which was developed in a
cooperation of IBM, Toshiba and Sony. On this processor multiple independent
� The ACCFS project is performed in collaboration with the Center of Advanced

Study IBM Böblingen, Development and Research, Germany.

J. Becker et al. (Eds.): ARC 2009, LNCS 5453, pp. 374–379, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.tu-chemnitz.de/cs/ra/projects/accfs/

ACCFS – Operating System Integration of Computational Accelerators 375

vector processors called SPUs (Synergistic Processing Units) are built around a
64-bit PowerPC core (PPE).

One of the big challenges when using such ”accelerators” is the efficient in-
tegration into a HPC system environment and the definition of appropriate
programming models as well. In this paper we address the operating system
integration by defining an open generalized interface. Therefore, we evolve ba-
sic concepts in Sections 3. The implementation called Accelerator File System
(ACCFS) is described in Section 4. In Section 5 some accelerator examples are
mentioned. Section 6 discusses further work and summarizes the results.

2 Related Work

To integrate a FPGA into the operating system several solutions exist. One is
the extension of Linux with hardware processes (e.g. BORPH [3]) or hardware
threads (e.g. ReconOS [4]). BORPH uses conventional UNIX IPC mechanisms to
communicate. Inter-thread communication is mapped to FIFOs. The hardware
threads introduced by ReconOS can use the normal operating system services
to interact with the environment. However, both solutions only concentrate on
FPGA integration without providing an open interface for easy integration of
additional hardware by using clearly exported structures. Also, these models
lack performance when they are implemented on platforms where the processor
that is running the operating system is not an integral part of the FPGA itself.
The main drawback is the deep modification of the Linux kernel. Thus porting
to another kernel version becomes more complicated and sometimes impossible
without patching when major kernel parts are changed in a new revision.

Another approach for FPGA integration is XVFS (Xilinx Virtual File System)
presented by Donlin et al. [5]. Here a virtual file system is used to directly modify
the low-level parts of the FPGA. XVFS represents all heterogeneous resources in
a file system hierarchy. Thus, it is possible to use standard read or write system
calls to get or manipulate the configuration of the FPGA. Furthermore, access
to every LUT, BRAM and routing information is granted. However, we do not
need such a detailed view as it is necessary for real-time or embedded system de-
signers. In our scope the FPGA is a computational accelerator where we abstract
the functionalities. Only the communication mechanisms message passing and
direct memory access together with the (re)configuration are needed. This will
enable us to establish a generalized accelerator model which is beneficial for li-
brary and application programmers. When accelerating an application, the same
communication and usage models can be adopted even if different accelerator
types are used.

If we look at graphic cards, we will see another integration approach named
CUDA [6]. A C-like language is used to program Nvidia graphic chips. CUDA
enforces a functional offload programming model where the compute kernels are
off-loaded to the GPGPU. The graphic card is exported to the user-space via a
character device. Data exchange is enabled through DMA transfers supported
by a library. It is not possible to map the memory into the application address
space. This restricts the achievable performance in a variety of communication

376 A. Heinig et al.

patterns. A second drawback is the usage of the ioctl kernel interface. It is not
possible to provide an open generic interface when using such ioctls, because
no standards exist how to define these.

A. Bergmann developed SPUFS (Synergistic Processing Unit File System) [7],
which is used to integrate the SPUs of the Cell/B.E. processor into the Linux
environment. The concepts of SPUFS are the virtualization of the SPU and the
virtual file system context access. A context is mapped into a virtual file system
such that it appears as a directory containing special files. File system operations
on these files effect the communication with a SPU.

The main advantage of both, SPUFS and XVFS, is the clean interface without
the usage of ioctls. Additionally no modifications of existing kernel structures
are necessary. Thus, we base our solution on these concepts.

3 Accelerator Integration Concepts

Virtualization. To virtualize the accelerators we abstract the physical acceler-
ator with an accelerator context. The context is the operational data set of the
accelerator. It includes all necessary information to describe the current hard-
ware state in such a way that the operation can be interrupted and resumed
later without data loss. In a multi-user/thread/process environment, like Linux,
virtualization optimizes the resource usage of the accelerators. Contexts which
do not make use of the hardware at a given time are not scheduled on the phys-
ical accelerator.
Generic Interface. We propose a virtual file system (VFS) to interface the
accelerator. This offers the advantage of a complete ioctl free implementation
because every functionality can be exported through a dedicated file. Each con-
text can be bounded on a directory inside the VFS. The accelerator is accessible
through a set of files supporting the POSIX file operations. To include reconfig-
urable hardware as well, this file set has to be dynamically exported.
Separation. The integration of new accelerators will be much easier when split-
ting the functionalities in a part which handles the common abstraction layers
and a part managing the low-level hardware access.
Host initiated DMA (Direct Memory Access). To interact with the ac-
celerator several methods are feasible. One is simple memory mapped IO with
standard load/store machine instructions. In this memory access method the
host is the active part who issues a read or write for every memory access. An-
other method is DMA-bulk transfer. Here the accelerator needs a DMA unit
capable of moving the data. In cases where the accelerator is able to initiate
these transfers by itself, the DMA unit has to handle virtual memory managing
issues, too. However, not every accelerator supports virtual memory. For this
reason we propose host initiated DMA, where the host setups the memory man-
agement unit and initialize the data transfer. The actual data movement is done
asynchronously by the accelerator.
Asynchronous Context Execution. This concept eases the software devel-
opment because multi-threading is not required when using multiple accelerator
units. Every context runs asynchronously to the host system.

ACCFS – Operating System Integration of Computational Accelerators 377

ac
97

 d
riv

er

...

Process Management Virtual File System Virtual Memory Socket

Applications

Syscall−API

Block Devices

Character Devicesext2 ... vfat

logical: virtual:

proc sysfs spufs

Disk Controller Drivers
S

P
U

 lo
w

 le
ve

l

ext3

N
vi

di
a

nv
de

v

A
M

D
−

A
ti

fb
de

v

F
P

G
A

 c
de

v

C
le

ar
S

pe
ed

 C
S

X

Bus Drivers

PCIe Host Bridge

Hardware

SPE FPGA ...

(a) Without ACCFS

⇒

ac
97

 d
riv

er

Process Management Virtual File System Virtual Memory Socket

Syscall−API

Applications

Bus Drivers

Block Devices

ext2 ... vfat

logical: virtual:

proc sysfsext3

D
ev

ic
e

H
an

dl
er

S
P

U

D
ev

ic
e

H
an

dl
er

D
ev

ic
e

H
an

dl
er

D
ev

ic
e

H
an

dl
er

N
vi

di
a

A
M

D
−

A
ti

F
P

G
A

C
le

ar
S

pe
ed

D
ev

ic
e

H
an

dl
er

...

Char
Devaccfs

ACCFS

Disk Controller Drivers

PCIe Host Bridge

Hardware

SPE FPGA ...

(b) ACCFS: Common Generalized
Interface

Fig. 1. ACCFS - Layered Structure

create context

(re)configure data access

destroy context

execute

Fig. 2. Flow Diagram: ACCFS Interface Usage

4 ACCFS - Implementation

The concepts described in Section 3 are implemented in ACCFS (Accelerator
File System). ACCFS is an open generic system interface based on SPUFS. It is
designed to integrate different accelerator types into the Linux operating system.
The goal of ACCFS is to replace the different character device based interfaces
(cf. Figure 1a) with a generic file system based interface (cf. Figure 1b).

The whole dotted block in Figure 1b shows ACCFS which is divided into two
parts. Part one, labeled ”accfs”, is the file system driver. Its task is to handle the
common stuff equally belonging to all accelerators. Included areVFSmanagement,
context creation, setting up DMA transfers, and providing the user interface. Last
but not least it handles the integration of the second part the ”device handlers”.
Therefore, a special interface called ”Vendor Interface” is implemented.

4.1 User Interface / VFS

ACCFS implements the flow diagram shown in Figure 2.
Before the application can use an accelerator a context has to be created by

invoking the acc create system call. The desired accelerator type is selected
with the arguments vendor id and device id. We chose this extra system call

378 A. Heinig et al.

Table 1. ACCFS Context

File Description

regs register file
[io]box in/out-bound mailbox
[io]box stat in/out-box status

File Description

memory/ exported memories (directory)
status execution status and synchronization
config device configuration

because mkdir can not convey so much arguments. Creating a special file was
also not an option, because ACCFS exports only the data related to a context.
A special control file however is not context specific. After the successful context
creation a new directory is created and the belonging file handle is returned. The
context is destroyed when closing this handle. The acc run system call is used
to start the execution of the accelerator. The accelerator (program) is executed
asynchronously, meaning that acc run returns immediately without waiting for
finished execution.

The communication with the accelerator is performed with the normal POSIX
read or write system calls on the files exported by ACCFS. Table 1 shows an
overview of the file set. If a file is visible/accessible depends on the device handler
that can dynamically enable or disable the entries depending on the capabilities
of the device.

A detailed view of the user interface can be found on the ACCFS project page
http://www.tu-chemnitz.de/cs/ra/projects/accfs.

4.2 Vendor Interface

The vendor interface consists of a couple of functions exported by accfs and a
structure called accfs vendor which have to be registered by each device handler.
This structure contains callback functions which are invoked by accfs instead of
the generic routines. For example, if the vendor needs to constrain the register
file access because the hardware can only write to 32bit boundaries, the device
handler has to declare the regs write function. Inside this function the correct
alignment can be checked.

5 Accelerator Support

Currently we are working on Cell/B.E. integration. Hereby a QS21 Cell Blade
is coupled with a Intel Xeon System via PCIe. We have already established a
heterogeneous coupling over Ethernet. There the RSPUFS (Remote SPUFS)[8]
implementation made the SPUs accessible on the AMD Opteron system.

As another proof of concept we have implemented an accelerator for arithmetic
operations on a HyperTransport FPGA card [9] based on a Xilinx Virtex-4. An
Iwill DK8-HTX motherboard with two Opteron processors is used as host sys-
tem. To get the FPGA running as a HT cave device we replaced the pre-installed
BIOS with a modified LinuxBIOS version. Our first test results looks promising.
We are able to exchange reconfigurable modules (currently a pattern matcher
and a Mersenne Twister) during run-time with the help of ACCFS. A detailed

http://www.tu-chemnitz.de/cs/ra/projects/accfs

ACCFS – Operating System Integration of Computational Accelerators 379

description of our solution will be published in a paper which is already submit-
ted under the name ”Run-Time Reconfiguration for HyperTransport coupled
FPGAs using ACCFS”.

The virtualization of the FPGA is currently not implemented. However, we
plan to realize a cooperative scheduling model, where a module running on the
FPGA is requested to step in a kind of a ”stop” state. When reached, the module
will be removed after saving the block RAM. This means all information inside
the block RAM must be sufficient to continue the operation after restore.

6 Conclusion

In this paper we have presented aspects of the concepts and the implementation
of ACCFS. These concepts build the grounding of our approach to establish
an open generalized accelerator interface. We have analyzed both reconfigurable
and non-reconfigurable hardware to define a common set of interface functions.
This interface supports the direct access of an accelerator through register file,
memory or via mail boxing. Those functionalities are reflected in files inside the
VFS exported by ACCFS. The file system calls open, close, read, write, and
mmap are building the user interface. With the exception of two new system calls
we do not modify any parts of the Linux kernel. This enables us to provide
ACCFS support also for future kernel releases.

Further research will focus on the complete integration of the Cell/B.E. and
FPGAs. We are also planning to port ACCFS to host systems other than x86.

References

1. Woods, N.A., VanCourt, T.: FPGA Acceleration of Quasi-Monte Carlo in Finance.
In: Proceedings of FPL, pp. 335–340. IEEE, Heidelberg (2008)

2. Samant, S.S., Xia, J., Muyan-Ozcelik, P., Owens, J.D.: High performance computing
for deformable image registration: Towards a new paradigm in adaptive radiother-
apy. Medical Physics 35(8), 3546–3553 (2008)

3. So, H.K.-H., Brodersen, R.: A unified hardware/software runtime environment for
FPGAbased reconfigurable computers using BORPH. Trans. on Embedded Com-
puting Systems 7(2), 1–28 (2008)

4. Lübbers, E., Planner, M.: ReconOS: An RTOS Supporting Hard-and Software
Threads. In: Proceedings of FPL, pp. 441–446. IEEE, Amsterdam (2007)

5. Donlin, A., Lysaght, P., Blodget, B., Troeger, G.: A Virtual File System for Dy-
namically Reconfigurable FPGAs. In: Proceedings of FPL, pp. 1127–1129 (2004)

6. NVIDIA, NVIDIA CUDA Compute Unified Device Architecture Programming
Guide. Santa Clara, CA, Tech. Rep, version 1.1 (November 2007)

7. Bergmann, A.: The Cell Processor Programming Model. IBM Corporation, Tech.
Rep. (June 2005)

8. Heinig, A., Oertel, R., Strunk, J., Rehm, W., Schick, H.: Generalizing the SPUFS
concept - a case study towards a common accelerator interface. In: Proceedings of
MRSC, Belfast, April 1-3 (2008)

9. Nüssle, M., Fröning, H., Giese, A., Litz, H., Slogsnat, D., Brüning, U.: A Hypertrans-
port based low-latency reconfigurable testbed for message-passing developments. In:
Proceedings of KiCC 2007 (2007)

	ACCFS – Operating System Integration of Computational Accelerators Using a VFS Approach
	Introduction
	Related Work
	Accelerator Integration Concepts
	ACCFS - Implementation
	User Interface / VFS
	Vendor Interface

	Accelerator Support
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

