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Abstract

Traditionally, fault-tolerance has been the domain of ex-

pensive, hard real-time critical systems. However, the rates

of transient faults occurring in semiconductor devices will

increase significantly due to shrinking structure sizes and re-

duced operating voltages. Thus, even consumer-grade embed-

ded applications with soft real-time requirements, like audio

and video players, will require error detection and correction

methods to ensure reliable everyday operation.

Cost, timing and energy considerations, however, prevent

the embedded system developer from correcting every single

error. In many situations, however, it will not be required

to create a totally error-free system. In such a system, only

perceptible errors will have to be corrected. To distinguish

between perceptible and non-perceptible errors, a classification

of errors according to their relevance to the application is

required. When real-time conditions have to be observed, the

current timing properties of the system will provide additional

contextual information.

In this paper, we present a structure for an error-correcting

embedded system based on a real-time aware classification.

Using a cross-layer approach utilizing application annotations

of error classifications as well as information available inside

the operating system, the error correction overhead can be

significantly reduced. This is shown in a first evaluation by

analyzing the achievable improvements in an H.264 video

decoder under error injection and simulated error correction.

I. INTRODUCTION

According to forecasts of semiconductor experts [1], future

computer systems will be exposed to non-negligible rates of

transient faults. A transient fault is a fault that occurs at some

unpredictable point in time due to external events like a high-

energy particle hitting a part of a semiconductor. Other causes,

like overheating conditions, can also be considered culprits for

transient faults. As a consequence, a temporary malfunction of

that part of the semiconductor—e.g., a transistor in a memory

cell—occurs and one or several bits are flipped in the system,

resulting in an error showing up. Due to ever decreasing

semiconductor structure sizes and reduced operating voltages,

the probability that such a particle impact affects stored in-

formation in the semiconductor circuit increases significantly.
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Thus, even the operation of non safety-critical systems may

be affected in everyday use and some form of error detection

and correction (EDAC) will be required.

A significantly large fraction of these systems consists of

video and audio processing equipment, which require soft real-

time capabilities. Most of these devices, like DVD and MP3

players or mobile phones, can be considered typical embedded

systems. The inherent limitations of these systems—cost, real-

time, memory and energy constraints—restrict the amount of

effort that can be put into error correction. As a consequence,

correcting every occurring error is often not feasible; we

expect that especially cost-sensitive devices like audio and

video players will be affected. Instead of providing perfect

error correction, these systems can employ a best-effort error

correction to improve resilience against transient faults.

Overall, the possible types of errors vary greatly. In order

to choose a meaningful foundation for our error correction

system, we first restrict ourselves to the most common error

case: transient errors showing up in RAM. The classification

of the severity and urgency of transient RAM errors cannot

be determined by the restricted information obtained from an

error detection system alone. Rather, additional information is

required to determine the context of an error; this information

is only available on the application level. Thus, our system

employs a cross-layer approach that consults application anno-

tations as well as information provided by the error detection

system to determine which errors are to be corrected at what

points in time.

In this paper, we devise a classification approach and, based

upon this classification, describe a system structure that will

enable an embedded system developer to build a soft real-

time system that implements this best-effort error correction

approach. The system structure is based on our earlier results

on error classification published in [2], which are included in

this paper in an extended manner, adding new metrics and a

revised evaluation of our data.

The rest of this paper is organized as follows. In section

II, our error classification approach is detailed, followed by

a description of our conceived system structure to support a

classification-based EDAC approach in section III. To ensure

the viability of our approach, an analysis of an H.264 video

decoder application is presented in section IV, followed by an

evaluation of the experimental results in section V. Section VI

discusses related work, and section VII concludes the paper

and gives an outlook to future work.
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II. ERROR CLASSIFICATION

Memory faults can manifest themselves in many different

ways. Both the memory location affected and the point in time

at which the error occurs relative to a program’s execution

are crucial parameters that decide if an error will crash an

application or will not show any noticeable effect (e.g., when

an unused memory location is affected). As a consequence, not

all errors that are detected—by well-known hard- or software

methods not considered in this paper—have to be treated

alike. Thus, a classification is required that provides a basis to

determine a precedence for error correction. While some early

approaches to classify errors according to their impact exist,

to the best of our knowledge, no system provides an important

feature of our approach: the flexibility to handle the same type

of error in a different way depending on the context it appears

in and the current timing conditions of the system.

To support different types of countermeasures, an applica-

tion has to provide annotations for different parts of the ap-

plication to classify possible errors. These annotations include

the urgency of error correction, the worst-case impact on the

quality of service (QoS) for the whole system, and the possible

error correction methods which may be applied to correct the

errors.

By annotating the urgency of error handling, the user

specifies, whether an immediate handling is required, or the

handling can be delayed until a certain event takes place.

In the latter case, the system can continue with subsequent

computations, if the overhead introduced by an immediate

error handling would jeopardize the adherence to the real-

time constraints. Nevertheless, if the correction of the error is

postponed, it may propagate to further memory locations. An

estimate of the impact of this effect has to be acounted for in

the annotations.

The remaining component of an annotation is a list of

possible error correction methods. Each method can reduce the

negative impact on the QoS to a certain amount, but in turn

requires some overhead. Depending on these parameters, the

system will be enabled to choose an appropriate error handling

method for the current context.

In practice, annotations are highly application dependent. To

demonstrate the error classification approach in the context of

a typical application, a video decoder is an excellent example,

since a certain amount of errors in its output is tolarable

while soft real-time properties are required. We will use a

H.264 decoder as an example throughout this paper to illustrate

possible effects of errors, the resulting classification and the

appropriate corrective action.

An overview of the error classification for our H.264

decoder is given in table I. The most obvious class of errors

are those that crash or terminate the affected application. This

may be the consequence of a pointer pointing to an incorrect

location, an arithmetical exception like a division by zero, or

an incorrectly used system service like a memory allocation

using an incorrect size specification. Obviously, these errors

have to be corrected immediately by recovering the last known

Impact on QoS Urgency Fault handling methods
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rollback,
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.

.

.

No Impact none ignore

TABLE I
ERROR CLASSIFICATION FOR OUR H.264 DECODER

error-free state of the system.

Errors that do not belong to this first class do not cause

the application to crash. However, they may cause serious

deviations its the inner state and the generated output, which

is directly visible in the QoS. If, for example, the frame type

field in the frame header is decoded incorrectly, the whole

frame will be misinterpreted. Correction of this type of error

has to be completed before the frame is finally displayed on

screen.

In comparison, the impact of an incorrect motion vector

on the QoS in much smaller, however, the urgency for this

kind of error is higher. If the motion vector is not corrected

immediately, the macroblock will be copied to a random area

in the frame. Although the affected range only has the size of

a macroblock, it is hard to restore. This example shows that

we cannot assume a given correlation between the impact of

an error on the QoS and the urgency error correction.

Incorrectly decoded intra macroblocks in a P-Frame have

a very limited effect on the QoS. They affect only a small

part of the result or affect the result only for a short amount

of time. The outcome will still be acceptable to the user, in

many cases the derivation will be hardly noticeable at all.

With the next decoded frame, the defective image range is

replaced in the output and future outputs are not affected.

Such errors may be ignored in order to adhere to the system’s

real-time constraints, depending on the quality requirements.

Nevertheless, depending on the urgency of the error, a delayed

error handling is possible, e.g. after the whole frame has been

decoded. Thus, if there is any slack time available until the
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frame will be displayed, a simple correction method could be

applied to reduce the negative impact on the QoS, e.g. by

copying a neighbor block.

In the following sections, we analyze critical parts of

our example H.264 video decoder application according to

the impact of errors. Following this, an evaluation of the

application’s behavior under error conditions is performed to

show the applicability of our classification approach.

III. SYSTEM STRUCTURE

A. System Components

Today, an embedded media player system, like a DVD

player, consists of various software components which have

to interact in order to provide the required functionality. The

most important components are the operating system, handling

real-time constraints, resource allocation, memory and I/O

management and the media player application, which decodes

the media data for live replay. Further components include less

timing critical parts like network and mass storage interfaces

and software that handles the user interface. The timing prop-

erties of the overall system are determined by the interaction

of the various components, controlled by the operating system

scheduler. In our case, an additional component is the EDAC

subsystem.

As a prerequisite for this paper, we assume that the OS

and EDAC subsystem are not affected by errors. Hence,

only the application is exposed to errors. This might be true

for a system that is equipped with different memories. On

the one hand, there might be a small robust memory space

manufactured in a way to show only a negligible fault rate or

protected by additional hardware features. On the other hand,

there might be larger, low-cost memories with a significant

fault-rate that are used for application and data. The OS and

EDAC subsystem would then be placed in the robust memory.

An example for such a system design can be found in [3].

To extend EDAC to protect the OS and EDAC subsystem is

a challenging topic for future research.

B. Error Detection and Correction

A differentiating approach to error handling under real-

time constraints requires on the one hand information on the

semantics of an error, provided by a classification approach

detailed above, and on the other hand information on the

current timing properties of the system, including the task of

the affected application and all related tasks. Error semantics

are a property of the application involved, whereas the timing

of a system is controlled by the scheduler of the underlying

operating system. Thus, a real-time system that is able to

employ context-dependent error handling behavior has to take

classification handling requires information from the applica-

tion as well as additional context from the system layer into

account.

Existing work describes many different methods for er-

ror detection and correction (EDAC). Our common criteria

for suitable methods is that the methods are low-cost and

should have low overhead. Among the detection methods are

simple, hardware-based methods like memory parity bits as

well as software-based methods like redundant execution or

checksumming of data. Approaches to correct encountered

errors may include checkpointing and recovery and redundant

execution of critical functions. In order to assess the overhead

introduced by the error detection and correction method,

methods that provide worst-case timing information will help

to calculate the overall timing dependencies of the system. To

create an approach that is as flexible as possible, functions

implementing EDAC will be contained in separate libraries to

be included with the OS.

The system should be highly configurable as to the error de-

tection and correction methods supported. For error detection,

possible approaches are low-cost hardware-based approaches

like parity bits and software-based approaches like redundant

instruction execution. Error correction can use any of several

proven approaches, e.g. checkpointing and recovery.

A system that improves reliability to transient errors thus

has to implement the components error detection, error cor-

rection, application annotation and scheduler control. In the

following paragraphs, we describe details of the intended

application annotation and the interaction of the system com-

ponents.

C. Application Annotations

As explained above, the semantics of an error can not

be deduced from information usually available inside the

operating system alone. This information includes data like the

address of the memory location that is affected by an error or

the current process context. In order to reach a decision on how

a specific error has to be handled, the OS thus has to correlate

this data with additional information on the semantics of the

specific error.

This information is specific to and has to be provided by

the affected application. In our system, application annotations
are used to provide information on the semantics of an error

that can not be inferred from information available inside the

OS alone.

As a first approach, annotations are created manually by

inserting calls to an annotation library into the application

code. These library functions augment an application-specific

database of error annotations which can in turn be retrieved

on demand by the operating system using callbacks into the

library. An example showing a potential implementation for an

application written in C is shown in fig. 1. Here, function calls

mark the beginning and end of a section of code with specific

error semantics. Whenever these functions are called, the

application-specific annotation data is updated by the library.

In case of a detected error, the OS calls the library to check if

an annotation is available for the current code section and can

then invoke the appropriate handling function from a provided

EDAC library.

To create a system providing maximum dependability, we

follow the pessimistic assumption that all code sections not
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...
decode_frametype: CRITICAL,
   instr_address_range: {...},
   data_addresses: [...]
...

void edac_critical_start(void) {
    ...
    add_annotation(...);
    ...
}

annotation lookup_annotation(void *addr) {
   ...
   return(annotation);
}

void transient_error_handler(void *address) {
    annotation = lookup_annotation(address);
    switch(annotation) {
        case NULL: 
        case ANN_CRITICAL: handle_error(address); break;
        case ANN_IGNORE: log_error(address); break;
         ....
     }
}

int decode_frametype(frame *current) {
    edac_critical_start();
    ....
    edac_critical_end();
}

int write_to_video_ram(frame *current) {
    edac_ignore_start();
     ...
    edac_ignore_end();
}

Annotation Library

Annotated Application

Annotation Data

Operating System

Fig. 1. Annotation interaction

annotated at all will require immediate error correction.1

However, the manual creation of annotations is a tedious

and potentially error-prone task. Thus, in future versions

of our system, the application developer shall be supported

by a compiler-based static code analysis tool that provides

automated annotations for sections of the application source

code. For example, if the application developer annotates an

intermediate result as less important for the quality of the final

output, with the help of data-flow and pointer analysis this

tool can identify all operations and inputs that contribute to

this result. However, more global information on the influence

of a piece of code to the quality of the output is not likely

to be deducible from a static analysis. This will still require

manual annotations. In that way, the application developer will

only have to annotate some parts of the source code instead

of having to review the whole source code.

D. OS Integration

The structure described in the previous paragraphs already

provides a simple integration of the annotations into the un-

derlying operating system. However, this integration alone can

not influence the temporal properties of our system. Hence, a

tighter integration of error handling and scheduling is required

in order to gain the appropriate timing flexibility.

When the system detects one or several errors, the scheduler

first has to interact with the error correction system to gather

the annotated error classification. Thereafter, the scheduler has

a complete list of all arisen error containing the urgency, the

impact on the QoS, and possible correction methods for each

error.

1However, there may be cases when a different default behavior is desirable.
This default behavior should thus be easily adaptable.

The second step is to use these information to create an

order in which the errors have to be corrected. Faults which

have to be corrected with a high urgency shall be handled

first. In cases where those errors have also a huge impact on

the overall system, like a program termination, the scheduler

must take intermediate action. When several errors of such

a severity occur in parallel, the adherence to the real-time

constraints will be of minor importance.

In general, the scheduler has to solve a multi-objective

problem. The first object is keeping the real-time constraints,

while the second object is to maximize the QoS. When several

errors occur in a short time interval, the scheduler has to

choose correction methods which keep the real-time constrains

but eventually lower the quality of the output. For example,

if three macroblocks are decoded incorrectly due to an error-

affected motion vector and there is no time to recalculate those

macroblocks, it would be sufficient to display grey blocks

or a neighbor block to keep the dead-lines. In a worst-case

scenario, all errors on these macroblocks would have to be

ignored.

The third step for the scheduler is to integrate the error

correction methods into the system schedule. Depending on

the specific type of scheduler used, error handling might be

added to the system schedule with a high priority in a priority-

based scheduler, whereas a TDMA-based scheduler might

reserve time slots for error correction. The scheduler has to

be sufficiently flexible to change the error correction order on

demand if new errors show up; e.g. when a recently occured

error has a higher urgency than the error which is already

scheduled for recovery.

In the following sections, we investigate functions of our

H.264 decoder which are important for the QoS and give first

hints where to annotate the source code.

IV. APPLICATION ANALYSIS

In this section, we analyze an H.264 decoder, which we

consider typical embedded application with soft real-time

requirements. H.264 or MPEG-4/Part 10, ISO/IEC 14496-10
[4] is a standard for video compression used for BluRay discs,

digital video broadcasting, videoconferencing, and many other

applications. The standard describes different profiles ranging

from the Constrained Baseline Profile (CBP), which defines a

subset of the Main Profile (MP), to the High 4:4:4 Predictive

Profile (Hi444PP), which supports advanced features like up

to 4:4:4 chroma sampling, up to 14 bits per sample, and

additionally supports efficient lossless region coding and the

coding of each picture as three separate color planes.

Here, we analyze the source code of a simple H.264 decoder

[5] consisting of about 3000 lines of C code and 1000 lines

of header files. The decoder implements a subset of CBP:

• I and P Slices (restricted to one back reference)

• CAVLC Entropy Coding

• 4:2:0 Chroma Format

• 8 Bit Sample Depth

Multiple reference frames, arbitrary slice ordering, and redun-

dant slices are not supported in this implementation.
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For complexity reasons, we currently restrict our transient

error impact analysis to the functions that are used directly

after one frame is copied to the NAL unit input buffer of our

H.264 decoder. Here, we assume that the transfer of the input

stream is error-free. Faults occurring, e.g. over packet-lossy

networks, are already investigated in various publications. An

overview of various approaches is given in [6]. For this first

evaluation, we only consider memory errors occurring in the

data segment of the application. Since the amount of memory

required for the video itself is usually orders of magnitude

larger than the memory required for the decoder application,

we expect to catch a significant number of errors using this

approach. In addition, it can be assumed that program code

in a typical embedded system is usually contained in flash

memory, which is far less susceptible to transient errors than

dynamic RAM.
In the following paragraphs, we show selected excerpts from

the analyzed H.264 video decoder and explain which specific

error impacts are to be expected.

Frame decoding
The frame decoding routine is shown in listing 1. According

to our assumption that errors occur only after the NAL unit

has been copied to the input buffer, line 3 is not affected by

memory faults. Thus, in the following paragraphs, we will

concentrate on lines 8 and 9.

1 frame_t * h264_decode_frame()
2 {
3 while(get_next_nal_unit(&nalu))
4 {
5 if(nalu.nal_unit_type==1 || nalu.nal_unit_type

==5)
6 {
7 ++frame_no;
8 decode_slice_header(&sh,&sps,&pps,&nalu);
9 decode_slice_data(&sh,&sps,&pps,&nalu,this,ref

,mpi);
10 frame_t *temp;
11 temp = this; this = ref; ref = temp;
12 return temp;
13 }
14 }
15 return NULL;
16 }

Listing 1. Decode Frame Routine

Decode Header Information
The most critical part of decoding is the processing of

header information. Here, a flipped bit can have fatal con-

sequences for the decoding of the whole frame and even

of subsequent frames. If, for example, the frame type is

decoded incorrectly, the header bits will be misinterpreted,

since different frame types use different layouts for header

data.
The majority of header items are integers encoded with

Exponential-Golomb codes, which can encode arbitrary pos-

itive integer numbers. The construction scheme favors small

numbers by assigning them shorter codes. A value of x has a

representation of:

x = 2n − 1 + v

where n is the number of “0” bits followed by one “1” bit,

and v represents an offset of the next n bits. For example, the

decimal value “5” is encoded as “00110”. In our decoder, the

decoding is implemented as follows:

1 int get_unsigned_exp_golomb()
2 {
3 int exp;
4 for(exp=0; !input_get_one_bit(); ++exp);
5 if(exp)
6 return (1<<exp)-1+input_get_bits(exp);
7 else
8 return 0;
9 }

Listing 2. Exponential-Golomb Calculation Routine

Here, the occurrence of a transient memory error can have

different impacts, depending on the program code affected:

1) An error which hits the n bits representing v
(input_get_bits(exp) – line 6) only has an im-

pact on the returned value. However, the value may be

used later on to calculate offsets in address operations.

This, of course, will lead to a crash with a high proba-

bility.

2) If, however, the part which calculates n
(for(exp=0;!input_get_one_bit();++exp);

– line 4) is affected by an error, the complete

application flow is disturbed, i.e., not just the output is

different than expected. Reading the wrong value for n
implies to read the input stream either not far enough

or too far. As a consequnce, subsequent calls of any

input_get_... function (cf. listing 3) will read at the

wrong input offset.

1 int input_get_one_bit()
2 {
3 int res=(nal_buf[nal_pos]>>(7-nal_bit))&1;
4 if(++nal_bit>7)
5 {
6 ++nal_pos;
7 nal_bit=0;
8 }
9 return res;

10 }
11

12 int input_get_byte()
13 {
14 return nal_buf[nal_pos++];
15 }

Listing 3. Input Reading Functions

Especially the second impact can completely change the

timing behavior of a system. In a worst-case scenario,

input_get_one_bit() always returns “0“, which results

in an endless loop. Such kind of application code is an

indication of a section in which protecting memory data reads

from errors is of major importance.

Decode Frame Data

Decoding frame data is not as critical as decoding the

header. In most cases, only incorrect pixel values will be read

from the input. However, there are also critical functions. One

of these is get_code, which is shown in listing 4.

125



1 int get_code(code_table *table)
2 {
3 unsigned int code=input_peek_bits(24)<<8;
4 int min=0, max=table->count;
5 while(max-min>1)
6 {
7 int mid=(min+max)>>1;
8 if(code>=table->items[mid].code)
9 min=mid;

10 else
11 max=mid;
12 }
13 input_step_bits(table->items[min].bits);
14 return table->items[min].data;
15 }

Listing 4. Get Code Table Entry

This function implements a binary search in a code table.

Due to different coding sizes, the number of bits is also stored

in the table. Here, a transient memory error can cause the

return of a corrupted data item and the invalid bit count, which

results in an incorrect reading of the input by any subsequent

input_get_... function.

Another critical function we found is residual_block,

which is used for parsing transform coefficient levels. This

function uses code tables and hence get_code() to decode

the coefficients.

Hence, a error affecting the get_code() function can

have a different impact on the QoS, depending on the current
context of the function call. If the function is used to get

data of a motion vector, the impact on the QoS and the

urgency of error correction will be higher than if data for an

intra macroblock is extracted from the input stream. Thus,

annotations should not be placed inside of get_code(),

since then always the highest impact and urgency would have

to be assumed, and the choice of alternative error correction

methods would be limited. Instead, it is more reasonable to

place an annotation in the calling function, or even another

function further up in the call hierarchy. Here, the intention of

the get_code() is known and the annotations can be more

specific.

Our evaluation has shown that the majority of

application crashes were caused by errors affecting

residual_block, get_(un)signed_exp_golomb,

and decode_slice_header.

V. EVALUATION

A. Application

To evaluate the error classification approach, we have de-

veloped an application that decodes a video using the decoder

analyzed in the previous section. This application compares

a frame decoded under the influence of error injection with

the corresponding correctly decoded frame. The results are

visualized using an in-house developed tool shown in fig. 2.

The tool displays the correctly decoded frame, the decoded

frame under error injection, and the difference between the two

frames. In addition, the metrics described below are calculated

and displayed for each frame.

Fig. 2. Error Analysis Tool

B. Error Metrics

Since we implement a best-effort approach to error cor-

rection, it is to be expected that some of the occuring errors

will propagate to the output. Nevertheless, we have to evaluate

whether the output is acceptable for the user. In order to

distinguish between perceptible and non-perceptible errors, we

used different metrics:

1) ΔE:

The ΔE metric is standardized in ISO 12647, which de-

scribes the distance between two colors. We define that

a ΔE value smaller than 5.0 indicates a non-perceptible
error. Our visualization tool shows the frame under error

injection, the correct decoded frame and a difference

frame showing perceptible and non-perceptible errors

(indicated by the intensity of the colors) by using this

metric; in addition, statistics giving the percentage of

errors accumulated over the whole video and statistics

of the current frame are displayed.

2) PSNR:

The peak signal-to-noise-ratio is most commonly used

to measure the quality of reconstruction of lossy com-

pression codecs. PSNR is defined by

PSNR = 10 log10
2B − 1

MSE
dB

where MSE denotes the mean squared error between

reconstructed and original frame, and B is the number of

bits per sample. A higher PSNR indicates higher quality.

In fig. 3, we give examples for different PSNR values.

In (a), the original frame is not recognizable anymore,
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(a) PSNR = 13.5 dB (b) PSNR = 20.5 dB (c) PSNR = 26.9 dB

Fig. 3. Comparision Of Different PSNR Values

whereas in (b) and (c), one can still recognize the content

of the frame.

C. Error Injection

In order to provide a reproducible, deterministic error sce-

nario, we added a separate error injection thread to the video

decoder application. The memory ranges where the errors are

injected are freely configurable. All injected single-bit errors

are registered by the injection thread and can be reverted

on demand to simulate error correction taking place, which

corresponds to a delayed error correction. However, this will

not correct errors which already have been propagated to other

locations. The error model employed is quite simple, a ran-

domized uniform distribution of flipped bits was implemented.

Additionally, our application allows to suspend error injection

at any arbitrary point, which corresponds to an immediate
error correction. Finally, a simple flush of the rollback buffer

simulates ignoring of errors.

To investigate the effects of errors, we used an artificially

high error rate of up to 240 injected errors per second. Thus,

fatal errors like a crashed application can be found in a

short amount of time. In addition, a video decode run can be

analyzed to generate the results. This analysis was performed

by comparing each decoded frame under error injection with

the expected correct frame.

D. Injection Scenarios

In our first evaluation, we decided to activate error injection

only in decode_slice_data (cf. listing 1 line 9). Thus, it

is ensured that the header was decoded correctly (line 8) and

the current NAL unit was copied without errors. This simulates

an immediate error correction with rollback and recalculation.

We enabled the injection of errors in the NAL buffer and

in the frame buffers. However errors injected in the frame

buffers have shown very little impact on the application, since

they modify only single pixels in the displayed frame or in

the reference frame. Hence, we will only concentrate on NAL

buffer errors for the rest of this paper.

In the previous chapter, we manually identified

residual_block as a critical function of the H.264

decoder. This function is called repeatedly from inside a

while loop inside decode_slice_data. We analyzed

various interesting combinations, where we selectively

switched off error injection and/or corrected errors at that

location to obtain hints for future application annotation

possibilities:

A) No error correction in decode_slice_data()
(cf. listing 1 line 9)

B) Error correction in residual_block
In this scenario all errors in the NAL-Buffer that oc-

curred so far are corrected and no new errors are injected

while reading the NAL-Buffer.

Scenario A and the perfectly decoded video are the extrema for

our evaluation. They are used to evaluate the results of scenario

B. With scenario B we like to show that the protection of the

manually identified function residual_block will lead to

significant improvements of the QoS.

E. Results

According to a profiling of the decoder using the gprof
tool, the investigated function residual_block accounts

for 26.0% of the overall execution time of the decoder for

2,880 frames (120 seconds at 24 fps) of our example video.

Overall, the function was called 4,582,301 times. The NAL-

Buffer copy code and the header decoding function, where we

do not inject errors, were called 2,880 times each and only

account for less than 0.02% of the overall run time. Taken

together, we investigated error correction in about 26.2% of

the application runtime.

We concentrate on the influence of our error correction

approach on the QoS. Therefore, we use two error injection

rates: 240 errors and 80 errors per second, which results in

10 respectively 3.33 injected errors per frame on average.

The results of the previously described scenarios A and B

are shown in table II.
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Injected faults per second 240 80

Scenario A B A B

Program Termination (crashes)
[%]

60.07 16.79 48.69 1.88

Frames with perceptible errors
(ΔE > 5) [%]

57.49 28.11 41.99 3.77

Average PSNR of frames with
errors [dB]

32.87 34.35 35.86 38.83

TABLE II
SIMULATION RESULTS

As expected, the impact on the QoS grows with a growing

error rate. The number of crashes of scenario A will increase

by a factor of 1.2 and the amount of frames with perceptible

errors increase by a factor of 1.3 if we triple the number

of injected errors. Those factors are significantly higher for

scenario B. Here, the crashes will increase by a factor of 8.9

and the visible errors increase by a factor of 7.4 if we triple the

injection rate. These values clearly show that the underlying

error model—in our case the random error distribution in the

NAL buffer—has a huge impact on the error handling method

to be used. Further research is required to extend the error

classification approach with respect to the error model of the

underlying hardware components.

The comparison of scenario A and B shows a significant

improvement of the QoS. Especially in the case where we

inject 80 errors per second the amount of crashes is reduced

by a factor of 25.8 times when enabling error handling in the

residual_block function, and the numer of perceptible

errors is reduced by a factor of 11.1.

Taken all scenarios into account, we can also determine

an increasing PSNR. This means, that even if the frame has

perceptible errors, those errors will be harder to notice.

These results back up our manual analysis. We clearly

identified functions that are extremely fault-critical. However,

in at least 1.88% of our test cases, the application is still

crashing. Those crashes are mainly caused by other, non-

annotated functions which also read from the NAL-Buffer,

since here errors are currently ignored.

VI. RELATED WORK

Currently, almost all existing error handling strategies

against transient faults treat every error alike. They correct

every error using techniques like triple- modular redundancy
[7], roll-forward checkpointing [8], or checkpointing and roll-
back recovery [9].

Various frameworks have already been proposed that can

implement software-based techniques automatically and re-

lieve the programmer from doing this manually. In [9], Li

et al. present a compiler that inserts library calls into the

program code that check whether a certain amount of time has

elapsed since the last checkpoint and trigger a new checkpoint

if required. Benso et al. built a software development kit [10]

that comprises a compiler, middleware, a device emulator

tool, and a fault injection environment. The compiler per-

forms source-to-source transformations like code-reordering

or variable duplication that increase the reliability of code.

A software wrapper is employed as middleware to protects

memory accesses against faults by adding redundancy.

Alfonso et al. developed a framework [11] with a focus on

multithreading. It provides a scheduler and a set of fault toler-

ance strategies. The user still has to provide an implementation

for subfunctions, like saving and restoring of checkpoints or an

acceptance test, that are needed by the chosen fault tolerance

strategy. The scheduler will apply EDF (Earliest Deadline

First) as a scheduling strategy.

An adaptive scheduling approach is presented in [12]. If no

task of a task set will miss its deadline, deadline-monotonic

scheduling is used. However, if the overhead for error handling

increases so that tasks will miss their deadline, the scheduling

behavior is changed to a value-based strategy. In that way,

critical tasks will obtain a higher priority and have a higher

chance to finish within their deadlines, while less important

tasks will be delayed.

Several other scheduling approaches for real-time systems

([13], [14], [15]) address the scheduling problem from a

different point of view. Here, a fixed scheduling strategy is

chosen and a schedulability check is performed offline. All

cited approaches assume that checkpointing is applied for

error handling and that for each task the distance between

checkpoints is always the same. Whereas Zhang et al. [13]

check whether a certain amount of errors will not cause a task

to violate its deadline given a constant checkpoint interval,

Kwak et al. [14] and Punnekkat et al. [15] determine the

optimal checkpointing intervals for the tasks. None of the

mentioned scheduling approaches propose a tight integration

of error handling into the scheduler or facilitate delayed error

handling.

The idea of our classification approach to ignore some errors

completely (i.e., not to handle these errors at all) is supported

by the observations made my Li et al. [16]. They analyzed

which impact transient faults can have on the output of

multimedia and AI applications as well as SPECInt CPU2000

benchmarks. Also, Polian et al. investigate errors in ISCAS-89

sequential benchmark circuits [17] and the motion estimation

part of an MPEG2 encoder circuit [18] from the same point

of view. Both conclude that, besides the fraction of faults that

make the system crash or lead to invalid results, a large number

of transient faults do not have any effect on the output of the

application. Some faults lead to deviations in the output or the

inner state of the application, but they are within a tolerable

range for the user. Especially for multimedia applications,

absolutely correct results are not required, since the user will

hardly recognize the difference. Unfortunately, in both papers

the resiliency of different parts of the applications has not been

investigated.

Some approaches already exploit these observations for

selective error protection techniques. Sundaram et al. [19]

assume that the memory is protected using Error Correcting

Codes and only instructions can be effected by faults. They de-
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cided to protect only arithmetic instructions with an influence

on the control path and address calculations by replication. To

determine these instructions, they use static analysis. In this

way, the replication overhead can be reduced by up to 33%

compared to a system were every instruction is protected, the

fidelity degrades only by 1%. Since our approach focuses on

faults in memory, this is a complementary approach. Mehrana

et al. [3] assume that only a part of the memory system

can be affected by transient faults. Thus, there are reliable

and unreliable memories. Their approach is to place memory

objects with a long lifetime in reliable memories, whereas all

other memory objects are placed in the remaining memory

space. As a consequence, these can be affected by faults.

About 99% of the transient faults are covered by this approach,

but only 36% of the memory objects have to be protected

against faults on average. This approach is based on the

assumption that objects that reside in memory for a longer time

span are exposed to faults with a higher likelihood than objects

with a short lifespan. Nevertheless, the approach does not

consider the relevance of objects. In contrast to our approach,

the objects are protected against faults and no error handling

is applied.

Methods for cross-layer resiliency are the topic of current

research projects at Intel [20] and IBM [21]. The authors

claim that cross-layer approaches to build resilient systems

can significantly reduce the cost of such systems and may

also offer possibilities for increased performance and reduced

power consumption. While these publications cover a wider

range—from the silicon level up to the application—than

envisioned in our approach, selective error handling for a best-

effort error recovery approach, which may enable the system

designer to further lower overheads, is not considered here.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an approach to error classifi-

cation that enables embedded systems developers to handle

errors in a flexible way. Using a cross-layer error handling

approach, errors can be handled according to their context as

well as the current overall timing conditions of the system,

employing a best-effort approach in order to adhere to timing

and quality requirements whenever possible. The soundness of

our proposed system structure is backed up by an analysis of

a typical, soft real-time critical H.264 decoder application.

Evaluating our error classification approach using an H.264

video decoder shows that using application knowledge can

significantly reduce the amount of errors that have to be

corrected while still maintaining acceptable quality of the

resulting output video stream. This provides the justification

for our system design, which knits a close connection between

application semantics and scheduling decisions. Embedded

system designers can so exploit the error classification and

reduce the related correction overhead significantly while still

increasing the reliability of the system.

The corner cases of our evaluation show that a typical

multimedia application in many cases depends on valid input

data to function correctly. For example, in many cases range

checks of input parameters in a data stream are omitted for the

sake of performance. There are even corner cases to be found

where such an unchecked value is used directly to calculate

some pointer offsets, leading to application crashes when a

parameter exceeds an expected value range. This creates an

additional challenge for dependable systems, since application

crashes require more overhead to fix and thus are highly likely

to violate real-time constraints. These programming practices,

however, do not only affect the resiliency of a system, but

also the security, thus safer programming practices may also

improve the resiliency of an application.

The next steps required in building our system include the

definition of a more precise semantics of error classifications

and an assessment of the timing overhead different EDAC

approaches require. Currently, the most tedious task is the

manual creation of application annotations. We do not expect

this procedure to be fully automatable. However, static analysis

tools may be able to support an application developer in

creating annotations to indicate error classification.

To evaluate the automated annotation mechanism to be

developed and show its general applicability, it will in addition

be important to analyze applications showing similar real-time

characteristics such as audio players, media recording software

or variants of the H.264 decoder analyzed in this paper, e.g.,

the decoder reference implementation.

We have not considered code segment or OS resiliency in

the context of this paper. For typical embedded systems, code

often resides in flash memory, which is far less susceptible

to transient errors than RAM. However, transient errors in

RAM will also affect the reliability of the OS itself. Handling

cases of OS RAM corruption in a real-time context will be a

challenging topic for future research.
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