
Using Application Knowledge to Improve Embedded Systems Dependability ∗

Andreas Heinig, Michael Engel, Florian Schmoll, and Peter Marwedel
Computer Science 12

TU Dortmund
D-44221 Dortmund, Germany

{andreas.heinig,michael.engel,florian.schmoll,peter.marwedel}@tu-dortmund.de

Abstract

Semiconductor experts are convinced that the rate of soft
errors occurring in electronic devices will rise to lev-
els that regularly affect everyday operation of devices.
Correcting every single error implies a significant hard-
ware and real-time overhead, especially for embedded
devices. Hence, an error classification is needed to dis-
tinguish whether an error has to be corrected or not.

In this paper, we present an approach using application
knowledge. This knowledge is used to classify errors
according to their relevance and the influence of their
correction on the timing behavior of the whole system.
When real-time conditions have to be met not all errors
can be fixed immediately.

Using a typical soft real-time application, an H.264
video decoder, as an example, we show that error cor-
rection can be delayed. Furthermore, we show that the
correction overhead will be significantly reduced if ap-
plication knowledge is employed.

1 Introduction

Future embedded systems will be based on semiconduc-
tor devices featuring smaller structure sizes as well as re-
duced operating voltages. These reductions will lead to
an increase in the number of transient errors in memory
devices as well as logic components.

In order to create a reliable system from increasingly
unreliable components, a naı̈ve approach would be to de-
tect and correct every single occurring error. This is a se-
rious dilemma for embedded system developers. To cor-
rect all errors, additional amounts of the scarce resources
processing power, memory and energy are required.

Often, this will exceed cost as well as performance
limitations of the embedded system in question. Thus,

∗This work was partially supported by the Artist Design Network
of Excellence EU FP7 ICT Grant No. 39316

in cases where real-time behavior is mandatory, correct-
ing every single error makes it extremely hard to meet
mandatory deadlines. Thus, a classification of errors ac-
cording to their impact on the quality of the embedded
system’s output is useful. This can be achieved by cor-
recting only certain errors. In the following sections, we
describe our classification approach for transient mem-
ory errors and present our first evaluation results.

2 Error Classification

It is obvious that the effect of memory errors in a system
varies significantly, depending on the affected memory
location and the point of time the error occurs relative
to a program’s execution. The effect of errors can range
from fatal errors like program crashes down to errors that
have no effect at all, e.g., when an unused memory loca-
tion is affected.

The most obvious errors are those that crash or ter-
minate the affected application. This may be the conse-
quence of a pointer referencing an incorrect location, an
arithmetical exception like a division by zero, or an in-
correctly used system service like a memory allocation
using an incorrect size specification. Obviously, these
errors have to be corrected whenever possible.

All other classes of errors do not cause program termi-
nation, but rather influence the result in different ways.
Here, we distinguish between errors that have to be cor-
rected and errors that may be ignored. Errors that cause
a large disturbance in the output, like an incorrectly de-
coded frame type in a video decoder, have to be treated
right away. Less significant errors are those that affect
only a small part of the result or affect the result only
for a short amount of time. Depending on the quality
requirements, these errors may be ignored in order to ad-
here to the system’s real-time requirements.

The least critical error class is one of the largest—
errors that do not show up on the application level at all.



All errors that affect unused memory or memory that will
be overwritten before reuse belong to this class.

For real-time critical systems, the effect of an error
cannot be assessed according to the quality of the out-
put alone. An additional dimension of classification, the
urgency of error correction, is of special interest, since
error correction has an influence on the real-time prop-
erties of a system. If error handling could be delayed,
the scheduler of a system governing the timing behav-
ior would be enabled to re-schedule tasks so that more
timing-critical functions are performed previous to error
correction. This classification is based on information
provided by the application as well as the system soft-
ware. Thus, real-time aware error correction systems
require a hybrid approach. This approach has to con-
sider information on error classification provided by the
application developer as well as application-internal and
system-wide timing properties.

3 Experimental Results

In this section we perform a case study to prove the con-
cept of delayed error handling using application knowl-
edge. Therefore, we performed an analysis of the source
code of an H.264 decoder [4] that implements a subset
of the H.264 base profile. Of special interest to us were
locations in the code which have a huge impact on the
reliability of the system.

We selected one of the manually identified critical
functions of the H.264 decoder, residual block.
This function repeatedly reads the so-called NAL-Buffer
containing the actual frame to be decoded. Frame data is
encoded using variable length coding. In the worst case,
a bit flip can lead to misinterpretation of the data length
and any subsequent read will return also wrong values
until the next frame is copied into the NAL-Buffer. As a
consequence, we evaluated the decoder’s behavior under
varying error injection conditions affecting this buffer.

Error Injection

In order to provide a reproducible, deterministic error
scenario, we added a separate error injection thread to
the decoder application which injects single-bit errors
into the NAL-Buffer. The error model employed uses a
simple, randomized uniform distribution of flipped bits.
All injected errors are registered by the injection thread
and can be rolled back later on demand to simulate error
correction taking place. This delayed error correction,
however, does not correct variables holding values de-
rived from previously corrupted inputs. Furthermore, we
can suspend error injection at any arbitrary point, which
corresponds to an immediate error correction. In any

case, error injection is suspended when we copy the in-
put into the NAL-Buffer and when the frame header gets
decoded, to prevent incorrectly reading critical informa-
tion like the frame type. Nevertheless, such critical errors
always require immediate handling.

To investigate the effects of errors, we used an arti-
ficially high error rate of up to 240 injected errors per
second. Thus, fatal faults like a crashed application can
be found in a short amount of time.

Results
First evaluations have shown that delayed error handling
is feasible. We disabled error injection and roll back er-
rors, which have shown up in the NAL-Buffer, at the be-
ginning of residual block. The application is still
affected by errors that have propagated to other mem-
ory locations than the NAL-Buffer. Those errors result
from simulated transient faults in between subsequent
calls of residual block, to which delayed error han-
dling has been applied.

The results of our experiments show that when apply-
ing error correction to the residual block function,
we could reduce the percentage of application crashes
from 60% to 2%.

In order to distinguish between perceptible and non-
perceptible errors, we used the ∆E metrics standard-
ized in ISO 12647, which describes the distance between
two colors. We define that a ∆E value less than 5.0 in-
dicates a non-perceptible error. The analysis was per-
formed by comparing each decoded frame under error
injection with the expected correct frame. Based on this
metric, the amount of perceptible errors in the decoded
video could be reduced from an average of 11.5% to less
than 0.6%.

According to a profiling of the decoder using the
gprof tool, the residual block function only ac-
counts for 26.0% of the overall execution time of the
decoder for 2880 frames (120 seconds) of our example
video. Overall, the function was called 4,582,301 times.

The input copy code and frame header decode code is
only executed 2880 times each, which is less than 0.2%
of the overall execution time.

These values show that if error correction is performed
in less then 26.2% of the overall decoder execution time,
the amount of perceptible errors and crashes can be sig-
nificantly reduced.

4 Related Work

Almost all error handling techniques for transient faults
aim at correcting every error that is caused by a sin-
gle event upset. In that way errors are prevented from
propagating in the application. Popular approaches that

2



do so are triple-modular redundancy [3], roll-forward
checkpointing [7], and checkpointing and rollback re-
covery [1]. For checkpointing, Silva and Silva [8] have
shown that using application knowledge rather than ap-
plying a static scheme the overhead for checkpointing
in runtime and memory footprint can be reduced signifi-
cantly.

In recent years, researchers have studied the impact of
soft errors on several applications. In [2] Li et al. stud-
ied the impact of transient faults on multimedia, AI, and
SPECInt CPU2000 benchmarks. Polian et al. [6] con-
sidered ISCAS-89 sequential benchmark circuits. All of
them make the observation that a large count of transient
faults do not have any effect on the application correct-
ness. Another fraction of faults changes the output or
state of the application, but do not make the application
crash and the results can still be accepted by the user.
Especially for multimedia applications absolute correct
results are not required, since the user will hardly recog-
nize the difference.

These observations led to selective protections and
hardening techniques against transient faults. Mehrana
et al. [5] placed memory objects with a long lifetime in
reliable memories, whereas all other memory objects can
be effected by faults. In [9] Sundaram et al. replicated
instructions, that are critical for the control path. These
instructions were determined by static analysis.

Both proposed techniques are based on the assumption
that the unprotected parts of the application are less sus-
ceptible to faults than the protected parts. Unfortunately,
they can only estimate the fault tolerance for the differ-
ent parts of an application, since they try to infer program
semantics only from the application code and leave out
application knowledge.

5 Conclusions and Future Work

In this paper, we presented an approach which uses ap-
plication knowledge to decide which errors to correct in
an embedded system. Of special interest are errors that
are critical for the reliability of the system. Using a typi-
cal embedded application, we have shown that correcting
only a subset of the errors that occur will still lead to a
system that provides acceptable service quality for the
end user while avoiding nearly all application crashes.
Delayed error handling is especially useful for real-time
critical embedded systems. When used as an additional
dimension for error classification, the overhead of error
correction in our example video decoder system could be
reduced significantly.

Considering the requirements of the system in ques-
tion, the next steps here are to actually create the
software-based error correction implementation. An
emerging question is to which extent the error handling

overhead can be reduced by exploiting error classifica-
tion and especially delayed error handling in general. To
answer this question, an assessment of both the quality
and the real-time properties of the resulting system under
real-world conditions is required. Based on the classifi-
cation, embedded system developers should be provided
with a simple and efficient way to create application an-
notations, which can be used by an (semi-)automated
tool flow in a later step. Here, future work will include
the definition of syntax and semantics for error annota-
tions in C as well as the provisioning of the required com-
piler infrastructure. In addition, the suitability of our ap-
proach for different implementations of the video player
implementation (e.g., the more complex H.264 reference
decoder) as well as different embedded applications is of
interest. Here, we expect very similar results for real-
time critical media-related applications like MP3 audio
players and mobile phones.

Acknowledgments

We appreciate the support of Martin Fiedler, the author
of the H.264 decoder analyzed in this paper [4], and Ingo
Korb, who fixed errors in the original implementation.

References
[1] LI, C.-C. J., STEWART, E. M., AND FUCHS, W. K. Compiler-

assisted full checkpointing. Software – Practice & Experience 24,
10 (1994), 871–886.

[2] LI, X., AND YEUNG, D. Application-level correctness and its
impact on fault tolerance. In Proc. of the 13th Int’l Symp. on High
Performance Comp. Architecture (2007), pp. 181–192.

[3] LYONS, R. E., AND VANDERKULK, W. The use of triple-modular
redundancy to improve computer reliability. IBM Journal of Re-
search and Development 6, 2 (1962), 200–209.

[4] MARTIN FIEDLER. Implementation of a basic H.264/AVC De-
coder (Seminar Paper), TU Chemnitz, 2004.

[5] MEHRARA, M., AND AUSTIN, T. Exploiting selective placement
for low-cost memory protection. ACM Transactions on Architec-
ture and Code Optimization 5, 3 (2008), 1–24.

[6] POLIAN, I., REDDY, S. M., POMERANZ, I., TANG, X., AND
BECKER, B. No Free Lunch in Soft Error Protection? In Proc.
of the 2nd Workshop on Dependable and Secure Nanocomputing
(Anchorage, Alaska, USA, 2008).

[7] PRADHAN, D. K., AND VAIDYA, N. H. Roll-Forward Check-
pointing Scheme: A Novel Fault-Tolerant Architecture. IEEE
Transations on Computers 43, 10 (1994), 1163–1174.

[8] SILVA, L. M., AND SILVA, J. G. System-Level Versus User-
Defined Checkpointing. In SRDS ’98: Proc. of the The 17th IEEE
Symp. on Reliable Distributed Systems (Washington, DC, USA,
1998), IEEE Comp. Society, p. 68.

[9] SUNDARAM, A., AAKEL, A., LOCKHART, D., THAKER, D.,
AND FRANKLIN, D. Efficient fault tolerance in multi-media appli-
cations through selective instruction replication. In WREFT ’08:
Proceedings of the 2008 workshop on Radiation effects and fault
tolerance in nanometer technologies (New York, NY, USA, 2008),
ACM, pp. 339–346.

3


