
Classification-based Improvement of Application
Robustness and Quality of Service in

Probabilistic Computer Systems

Andreas Heinig1, Vincent J. Mooney2,3, Florian Schmoll1, Peter Marwedel1,
Krishna Palem2,4, and Michael Engel1

1 Computer Science 12, TU Dortmund, Germany
2 Inst. Sustainable and Applied Infodynamics, NTU, Singapore

3 School of ECE, Georgia Institute of Technology, Atlanta, GA, USA
4 Department of Computer Science, Rice University, Houston, TX, USA

Abstract. Future semiconductors no longer guarantee permanent de-
terministic operation. They are expected to show probabilistic behavior
due to lowered voltages and shrinking structures.
Compared to radiation-induced errors, probabilistic systems face increa-
sed error frequencies leading to unexpected bit-flips. Approaches like
probabilistic CMOS provide methods to control error distributions which
reduce the error probability in more significant bits. However, instruc-
tions handling control flow or pointers still expect deterministic opera-
tion, thus requiring a classification to identify these instructions.
We apply our transient error classification to probabilistic circuits using
differing voltage distributions. Static analysis ensures that probabilistic
effects only affect unreliable operations which accept a certain level of
impreciseness, and that errors in probabilistic components will never
propagate to critical operations.
To evaluate, we analyze robustness and quality-of-service of an H.264
video decoder. Using classification results, we map unreliable arithmetic
operations onto probabilistic components of a simulated ARM-based ar-
chitecture, while the remaining operations use deterministic components.

Keywords: Probabilistic Systems, Dependability, Fault-Tolerance

1 Introduction

Future electronic components for embedded systems will increasingly use low-
ered supply voltages and shrinking structure sizes. The positive effects of this
technology scaling – lowered energy consumption and reduced costs – do not,
however, come for free. These semiconductor circuits will be susceptible to faults
due to electromagnetic noise to a much greater degree than current devices, often
resulting in erroneous program execution or system crashes. In order to obtain
acceptable fabrication yields, it is necessary to not reject chips with a certain
level of error. Thus, the decades-old assumption of deterministic operation of a
computer will no longer be valid. Future chips will exhibit probabilistic behavior.

2

Recently developed technologies like probabilistic CMOS (PCMOS) [4, 18–
20] control the error distribution in order to reduce the probability of errors
showing up in more significant bits of a data word. Using Biased Voltage Scaling
(BIVOS), different voltage distributions are employed to achieve this effect [9].

This leads to a new fault model that is not yet considered in fault-tolerance
approaches. Previous models assumed a comparatively low error rate and a uni-
form distribution of faults over all components of a semiconductor. Using prob-
abilistic components, an adapted fault-tolerance approach can benefit from the
fact that the locations of faults and their distribution are well-known.

However, only a certain subset of all operations performed by a microproces-
sor can be safely mapped onto a probabilistic component. While this is feasible
for typical signal processing applications such as calculations in audio and video
decoders, other instructions cannot tolerate imprecise results. Some obvious ex-
amples for these are address calculations for branch targets or pointer arithmetic
when accessing array elements. The difference is that an imprecise result in a
signal processing operation will only lead to a decreased output quality (which
may, depending on the quality and compression ratio of the input signal, not
even be visible), whereas a fault in the latter case would most probably result in
a system crash. Following, we concentrate on probabilistic arithmetic operations.

In order to distinguish between these error classes, we apply a classification
approach we have previously developed for classifying the effect of transient,
radiation-induced errors. Using the results of a static analysis of the application
source code, the classification determines for each operation if the operation can
accept imprecise results or not. It has already been shown that this approach can
improve the resilience of embedded systems against transient errors [11], but it
has so far not been applied to probabilistic systems. For transient errors, the clas-
sification is used to decide which error correction method to apply. In contrast,
in probabilistic systems, the classification gives hints as to which machine-level
operations can be mapped to probabilistic arithmetic functions and which have
to be performed in a reliable way.

The main contributions of this paper are as follows:

1. We evaluate the effects of probabilistic behavior of semiconductors on the
robustness and quality of service provided by a real-world application,

2. we show that a mapping using static analysis results can mitigate the effect
of otherwise fatal errors,

3. and we show unexpected effects of different voltage scaling methods on the
quality of service (QoS) and devise an approach to improve the QoS while
continuing to use probabilistic components.

The rest of the paper is organized as follows. Section 2 gives an overview of
PCMOS, its error models, and its implementation in the context of the MPARM
simulation platform. Section 3 describes our static analysis method and the
target H.264 video decoder application. Section 4 presents evaluation results
focusing on the robustness and QoS provided by the H.264 decoder application
under a probabilistic error assumption. Section 5 discusses related work, followed
by conclusions and an outlook onto future research challenges in Section 6.

3

2 PCMOS

The notion of probabilistic CMOS (PCMOS) was first introduced by Palem [20]
in the context of probabilistic bits (PBITS) and probabilistic computing [19].
Briefly, the idea is to allow previously deterministic Boolean bits to have a prob-
ability of being a zero or a one. Thus, logic functions have probabilistic outputs
instead of deterministic outputs (deterministic bits). In the context of computa-
tion based on silicon, one possible prediction of future PCMOS behavior is based
on thermal noise [24, 2]. In this section, we describe the probabilistic components
considered in this paper and their use in a system simulation environment.

2.1 Component Models and Probabilistic Error Model

We consider probabilistic behavior of adders and multipliers. As basic compo-
nent for building multi-bit adders and multipliers, we use the three-stage model
for probabilistic full adders (PFA) described in [24] (models 1–6). Based on logic
paths, these models describe the effect of distinct loads per output of a gate.
These models yield fast simulation time but are within 7–8 % accuracy of more
complex SPICE-based models. However, these more complex SPICE simulations
take orders of magnitude more time to execute. In other words, the error rates
calculated with the three-stage models of [24] are fairly accurate and fast to
compute, which enables their use in a full system simulation of a complex appli-
cation.

Supply Voltage Schemes. One important property of the probabilistic com-
ponents considered here is that each low-level component, like a single-bit prob-
abilistic full adder, can be supplied with a different voltage, causing a difference
in its susceptibility to noise. When combining single-bit PFAs to form larger cir-
cuits, this leads to various non-uniform biased voltage scaling (BIVOS) schemes.

The BIVOS schemes considered here provide more significant bits with a
higher voltage than less significant bits, so that the probability of noise-induced
errors in more significant bits of a word is reduced. For small benchmarks, [4] and
[18] show that using BIVOS the accuracy of the probabilistic ripple carry adder
described below can be increased compared to uniform voltage scaling (UVOS),
where supply voltage is reduced for all bits equally, so that they have the same
suspectibility to noise. However, this has not been analyzed in the context of
a large real-world application. The qualitative and quantitative results of our
evaluation are described in Section 4.

Adder Implementation. The probabilistic adder considered in our system is
a probabilistic ripple carry adder (PRCA). The PRCA simulation uses different
models of the PFA, depending on the different output loads of each full adder
in the overall circuit. For clarity, Figure 1 shows a four-bit adder instead of the
32-bit adder actually used. In order to construct a PRCA using the three-stage-
model, three different PFA models are required. The PRCA simulation starts

4

with the PFA calculating the least significant bit s0 on the right hand side of
Figure 1. The sum and carry bits are calculated deterministically. Thereafter,
probabilistic behavior is modelled by bit-flips on the interconnections. These
bit-flips will occur according to the error probabilities pi(mj , vk) determined by
the SPICE simulation. Here, the probability depends on the PFA model and the
configured supply voltage.

Model 6
FA

Model 6
FA

Model 4
FA

Model 5
FA

a3 b3 a1 b1a2 b2 a0 b0

ps(m4,v3) ps(m6,v0)ps(m6,v1)ps(m5,v2)

cout s0s1s2s3

pc(m5,v2) pc(m6,v1) pc(m6,v0)pc(m4,v3)

Fig. 1. Simulated PRCA

Multiplier Implementation. The multiplier we use is a probabilistic version
of a Wallace tree multiplier (PWTM), as shown in Figure 2 for a case of four-
bit multiplication. Like the PRCA, the PWTM is constructed from multiple
probabilistic full adders. For clarity, we only show four bits and do not indicate
error injection. Bit-flips occur analogously to the PRCA case. Each PFA can be
supplied with a different supply voltage Vi and uses a PFA model Mj according to
the specific output load, enabling the analysis of different BIVOS configurations.

Vss Vss

Vss

Vss

P7 P5 P4 P3 P2 P1 P0P6

V0 - M6V2 - M5V3 - M4

V1 - M3

V2 - M1V3 - M1

V0 - M6V0 - M6V1 - M6

V1 - M3V2 - M3V3 - M2

Fig. 2. Simulated PWTM

2.2 Implementation in MPARM

In order to perform an analysis of a complex real-world application, an execution
platform for the application binary is required. Here, we extended the MPARM

5

ARMv3m architecture simulator [1] to include PRCA and PWTM components
in the CPU core in addition to the standard deterministic ALU and multiplier.
Four new instructions of the simulated MPARM CPU core use the probabilistic
components, whereas all other instructions continue to use deterministic compo-
nents only. The new instruction are addition (padd), subtraction (psub), and
reverse subtraction (prsb) using the PRCA, as well as multiplication (pmul)
using the PWTM described in Section 2.1

3 Annotations and Static Analysis

If probabilistic behavior of system components is to be expected, the developer
writing software for such a platform has to be enabled to control the implications
of using these probabilistic components. In this section, we describe how the
notion of reliable and unreliable type qualifiers for annotating data objects of a
C program, already successfully employed for handling transient errors [7], can
be used in case of probabilistic behavior of well-known components.

In order to indicate the error tolerance of a variable or other data object,
such as a structure in a C program, it has to be annotated. The annotations
indicate if the data contained in a variable or data structure is expected to be
reliable – i.e., deterministic behavior is required – or unreliable. In the latter
case, probabilistic calculation results assigned to a data object can be tolerated
since it will have no fatal consequences, e.g., an abnormal program termination.
However, such an operation may influence the quality of the generated output.

To avoid fatal consequences and unintentional propagation of errors in an ap-
plication to a reliable data object, the use of unreliable data objects is restricted
using a compile-time static analysis approach. Basic semantic rules governing
the analysis are described in detail in [7]. Summarized, the basic rules prohibit
the assignment of unreliable data objects to a data object with reliable data. In
addition, it must be ensured that unreliable operations do not affect the control
flow. Thus, the analysis restricts the use of probabilistic expressions in if and
loop conditions. A third class of critical operations in C use pointers or array in-
dices. These may also not use probabilistic expressions. Several other conditions,
such as avoiding probabilistic divisors, are also considered.

Accordingly, the source code of our H.264 decoder was extended by reliable
and unreliable annotations. As a starting point, the luminance and chrominance
arrays of a video frame have been annotated as unreliable, as shown in
Listing 1.1. By default, data without explicit annotation is treated as reliable.

Listing 1.1. Frame data structure

typedef struct __frame {
int Lwidth, Lheight, Lpitch;
int Cwidth, Cheight, Cpitch;
unreliable uchar * L, * C[2];

} frame;

6

To check compliance with the semantic rules, we use our probabilistic C com-
piler prob-cc, a source-to-source compiler based on ICD-C [12]. Besides semantic
rule checks, prob-cc also propagates reliability annotations along the control flow
path. Additionally, prob-cc is able to determine further objects which can be
safely annotated as unreliable according to the semantic rules described above.

An example of an annotated function is shown in Listing 1.2. This function is
used to add a value generated by an inverse cosine transform to a specific frame
buffer position. Its result is guaranteed not to change the control flow. However,
it may result in changed output data, i.e., disturbance of the decoded frame.

Listing 1.2. Function example

void enter(unreliable uchar *ptr, unreliable int q_delta) {
unreliable int i = *ptr + ((q_delta + 32) >> 6);

*ptr=Clip(i);
}

In an additional step, prob-cc can transform C code with probabilistic anno-
tations to code using the probabilistic instructions we added to MPARM. The
converted form of the function shown in Lst. 1.2 is depicted in Lst. 1.3.

Listing 1.3. Code transformed by prob-cc

void enter(uchar *ptr, int q_delta) {
int i = __paddsw((*ptr), (__paddisw(q_delta, 32) >> 6));

*ptr = Clip(i);
}

Our compiler substitutes probabilistic operations with special macros using
the related inline assembler instruction. For example, paddisw performs a
probabilistic add of a signed word with an immediate value.

4 Evaluation

4.1 Experimental Environment

We evaluate the influence of noise on the stability and quality provided by an
H.264 video decoder application under different voltage distribution schemes for
probabilistic adder and multiplier components. The H.264 decoder is annotated
and compiled using prob-cc and executed on our extended MPARM simulator.

We simulate the decoding of a set of five different videos using UVOS schemes
in 90nm technology with voltage levels from 1.2 V to 0.8 V in steps of 0.1 V as well
as different BIVOS schemes described below. In this paper, we assume Gaussian
distributed noise. The root mean square (RMS) value for the noise is set to
0.12 V, 10 % of the nominal supply voltage.

4.2 Qualitative Analysis: Applicability of Probabilistic Arithmetics

As a first step, we evaluated if a significant percentage of a program’s instruc-
tions can be safely executed using our probabilistic adder or multiplier. Using

7

MPARM, we counted the number of instructions executed dynamically and de-
termined which of these could tolerate an imprecise result. Table 1 shows the
relative frequencies. Here, 76.27 % of mul instructions means that about three
quarters of all multiplications were computed using probabilistic components,
whereas all other multiplications were computed using the deterministic ALU.
In total, 13.36 % of all operations were executed on probabilistic arithmetic com-
ponents. This is a significant result, since this percentage considers all operations
executed by the ALU5 including logic and compare instructions.

The results also show that using reliability annotations, the control flow of
the decoder is not altered. Thus, the application does not exhibit crashes or
hangs in any of the benchmarks performed when using probabilistic arithmetics.

Table 1. Instructions executed using probabilistic components

Instruction Type add sub rsb mul overall

Executed using PRCA/PWTM 18.59 % 18.60 % 43.01 % 76.27 % 13.36 %

4.3 Quantitative Evaluation: Signal-to-Noise Ratio Using UVOS

After showing that probabilistic operations can actually be used by a significant
fraction of the H.264 decoder, the second step of our evaluation now considers
the effect of noise on the output quality (in general, the quality of service) of the
video decoder under different uniform supply voltages. The quality is evaluated
using peak signal-to-noise ratio (PSNR) values for each decoded frame using
probabilistic components compared to a correctly decoded frame:

PSNR = 10 log10

2B − 1

WMSE
[dB]

Here, WMSE denotes the weighted mean squared error between the frames,
and B is the number of bits per sample. A higher PSNR value indicates better
quality. A perfect video has a PSNR value of infinity. Commonly, a PSNR value
of at least 35 dB is recognized as good quality. In contrast, a value of less than
25 dB indicates very poor quality. However, the interpretation of video quality
and PSNR values depend on the perception of the viewer and the output quality
requirements. The values indicated are accepted for consumer video applications.

Figure 6 shows results for a test video using different voltages. In (a), the
reference frame simulated at the nominal voltage is shown. When uniformly low-
ering the supply voltage, noise effects are increasingly visible, leading to garbled
pictures at 0.9 V (d) and 0.8 V (e). Detailed PSNR values are shown in Figure 8.
It can be easily seen that a better quality is achieved using a higher supply
voltage. Using UVOS, PSNR values for 1.0 V are already below the acceptable
limit of 25 dB.

5 Here, we count multiplication as an ALU operation.

8

(a) VDD = 1.2V (b) VDD = 1.1V (c) VDD = 1.0V (d) VDD = 0.9V (e) VDD = 0.8V

Fig. 6. Uniform voltage scaling results

4.4 Quantitative Evaluation: Signal-to-Noise Ratio Using BIVOS

Due to the disappointing results achieved using UVOS, it is interesting to analyze
if employing BIVOS schemes provides a better quality using energy budgets
equivalent to the UVOS schemes. The UVOS and BIVOS energy consumption
is calculated with the energy model used by MPARM based on [22].

We consider the three BIVOS models shown in Figure 7. PSNR results for
the UVOS and BIVOS schemes evaluated are shown in Figure 8. Naive BIVOS
(N) supplies less significant bits with a low voltage and the most significant bits
with the nominal supply voltage. Here, only a very low PSNR could be achieved.

0.8 V

0.9 V

1.0 V

1.1 V

1.2 V

 0 4 8 12 16 20 24 28

V
o
lt

a
g
e

Bit position

N (Naive)
A
B

Fig. 7. BIVOS setups used

Due to the fact that 1.1 V UVOS shows good PSNR values, we constructed
a second BIVOS scheme (A). Here, we do not supply the most significants bit
with the nominal voltage. Instead, we reduce this voltage to 1.1 V and spend the
energy saved to increase the supply voltage of less significant bits. As shown in
Figure 8, this version achieves improved PSNR values using the same amount of
energy as the 1.0 V UVOS scheme. However, the PSNR value is still quite poor.

Analyzing the H.264 code further revealed that most of the code only uses
less significant bits of the 32 bit probabilistic adders and multipliers. Hence, we
devised BIVOS scheme B, which supplies the least significant bits with a higher
voltage than the most significant bits. Again, we use the same amount of energy

9

as the 1.0 V UVOS scheme. The PSNR values of this version are in fact better
than all other BIVOS versions, but still worse than the 1.0 V UVOS scheme.

4.5 Quantitative Evaluations: Summary

Figure 8 shows PSNR values for our benchmark videos using the described UVOS
and BIVOS schemes. Contrary to the micro benchmarks described in [4] and [18],
applying probabilistic BIVOS components in a real-world application does not
improve the output quality under identical energy budgets. We tried to improve
the PSNR by applying different simulated BIVOS schemes but we were not able
to achieve the quality of the simple 1.0 V UVOS scheme.

We identified one reason for this phenomenon. It is caused by the H.264
specification when transferring a 32-bit integer into an 8-bit value to be stored
in the frame buffer. In some parts of the code, a clipping function (cf. Listing 1.2)
is used which implements saturation by restricting values to a maximum of 255.
For BIVOS scheme B this implies that if, e.g., bit 11 flips, the precision of the
less significant eight bits is irrelevant. In the opposite case, e.g., using BIVOS
scheme A, correct clipping is performed, but the least significant eight bits are
too imprecise. For operations like the selection of luminance and chrominance
values for macro blocks or larger frame parts, this effect is even worse.

 0

 10

 20

 30

 40

 50

0.8 V 0.9 V 1.0 V 1.1 V BIVOS N BIVOS A BIVOS B

P
S

N
R

 [
d

b
]

good quality

poor quality

Video 1

Video 2

Video 3

Video 4

Video 5

Average

Fig. 8. PSNR values for simulated videos

Thus, the unexpected result of our quantitative analysis shows that due to
the properties of H.264, we are unable to find a BIVOS scheme that reaches
25 dB PSNR using a comparable amount of energy as the 1.0 V UVOS scheme.
To the best of our knowledge, all papers that optimize the power distribution for
BIVOS assume input values uniformly distributed over the value range of their
data type [13]. For H.264, this assumption in many cases does not hold.

Since it is unrealistic to assume that separate adders for different, commonly
used data widths will be provided in future architectures, an analysis of the
number of bits actually used in arithmetic operations is required. However, this
implies further complications. An idea of an approach that combines bit-width
analysis methods for arithmetic operations and code transformations to use bits
with optimal supply voltage for the operation at hand is described in Section 6.

10

5 Related Work

Using type qualifiers as annotations has been proposed by [8] and [5]. They
present frameworks to extend typed programming languages by user defined
type qualifiers. Types are augmented with additional semantics used to ensure
invariants statically at compile-time. Additional tools infer type qualifiers to
ease the annotation of applications. Hence, their work is very similar to ours.
Nevertheless, they do not exploit type qualifiers for code generation.

In [23], type qualifiers for mapping data to potentially imprecise low-power
memories and processors are described. Using approximate and precise qualifiers,
the authors distinguish between data that may tolerate inaccuracies and those
that may not. A checker ensures that the use of qualifiers complies with rules
similar to our semantic rules. Energy savings of 10–50 % are reported, with QoS
loss highly depending on the approximation strategy. Compared to our work,
annotations have to be added manually and a high-level simulation is used for
evaluation.

PCMOS was first introduced by Palem [20] in the context of probabilistic
computing [19]. Various methods for modeling thermal noise based probabilistic
primitives like logic gates and adders have been developed [2, 10, 24]. Lau de-
scribes a mathematical approach to model probabilistic components [15]. Here,
HSPICE simulations of simple PFAs are used to determine the probability of
a bit flip in a larger PRCA. In [6], Dhoot describes a motion search algorithm
based on probabilistic components. Kedem [14] uses data flow graphs to mini-
mize expected errors in the FFT of a JPEG decoder for a given energy budget.

The impact of soft errors was studied for several applications by [16, 21, 11].
It could be shown that a large number of transient faults do not have any effect
on application correctness. Another fraction of faults changes the output or state
of the application, but causes no crashes while providing acceptable quality.

6 Conclusions and Future Work

In this paper, we presented an analysis of probabilistic effects on a real-world
benchmark application. Using a processor model extended with probabilistic
arithmetic components, we were able to avoid all application crashes due to
probabilistic results by mapping only suitable operations onto the probabilis-
tic components. A significant percentage of all arithmetic operations could be
performed using probabilistic components, so our classification serves as an ad-
ditional verification of the feasibility of using probabilistic components.

However, our experimental results also show an unexpected effect. The cur-
rently available BIVOS schemes are not guaranteed to improve the quality of
service compared to a UVOS scheme using the same amount of energy. An
analysis of the application identified a possible cause of this problem. Since the
probabilistic arithmetic components use a fixed bit width (32 bits) using BIVOS
distributions, the most visible effect on the output quality would only be achieved
if the most significant bits were actually significant for the operation at hand. A

11

profiling-based analysis on selected variables showed that the actual value range
used was significantly smaller than 232. Often, two to ten of the most significant
bits of a 32 bit unsigned integer variable contained no useful information.

This observation guides our future research in this area. We intend to ex-
tend our static analysis approach by methods that can determine the number
of unused bits of probabilistic variables. Using this information under a BIVOS
distribution, additions and subtractions could be performed by shifting the pa-
rameters by the unused number of bits minus one to the left. For multiplications,
the result may in general require twice as many bits as the largest operand. Thus,
we expect shifted multiplications to have a lowered potential to improve the QoS.

Several approaches seem useful to reliably use shifted operations. Obtaining
maximum bit widths for variables is possible using safe static approaches [3, 25]
or heuristic approaches [17]. Both are commonly used in when optimizing bus
widths in semiconductors. It depends on the application whether overapproxi-
mating the bit range or a cutoff of most significant bit(s) will have a larger effect.
Our static analysis should thus be extended by one of these approaches.

It is obvious that probabilistic behavior can have different effects on oper-
ations, even when only considering those operations that can accept imprecise
results. We will have to extend our annotations by changing the current binary
error impact model (crash/no crash) to include more precise information on the
QoS impact of an error. A model similar to a probability distribution (numbers
in an interval from 0 to 1) could be used to indicate QoS impact. This would be
compatible with the current semantics. An impact factor of 1 would be the worst
possible impact (application crash or hang leading to a service failure), whereas
a value of 0 would indicate that no visible QoS impact is to be expected. This
model is, in turn, also expected to be useful for transient error models in order
to obtain more detailed information on the urgency of error correction.

Acknowledgment

This work is supported by DFG priority program 1500, grant no. MA943/10-1.

References

1. Benini, L., Bertozzi, D., Bogliolo, A., Menichelli, F., Olivieri, M.: MPARM: Ex-
ploring the Multi-Processor SoC Design Space with SystemC. The Journal of VLSI
Signal Processing 41, 169–182 (2005)

2. Bhanu, A., Lau, M.S.K., Ling, K.V., Mooney, V.J., Singh, A.: A more precise
model of noise based CMOS errors. In: Proc. Intl. Symp. on Electronic Design,
Test and Applications. pp. 99–102 (Jan 2010)

3. Budiu, M., Sakr, M., Walker, K., Goldstein, S.: Bitvalue inference: Detecting and
exploiting narrow bitwidth computations. In: Proc. of Euro-Par 2000 Parallel Pro-
cessing, LNCS, vol. 1900, pp. 969–979. Springer (2000)

4. Chakrapani, L., Muntimadugu, K., Lingamneni, A., George, J., Palem, K.: Highly
energy and performance efficient embedded computing through approximately cor-
rect arithmetic. In: Proc. of CASES. pp. 187–196. ACM (2008)

12

5. Chin, B., Markstrum, S., Millstein, T., Palsberg, J.: Inference of user-defined type
qualifiers and qualifier rules. In: Programming Languages and Systems, Lecture
Notes in Computer Science, vol. 3924, pp. 264–278. Springer (2006)

6. Dhoot, C., Mooney, V.J., Chau, L.P., Chowdhury, S.R.: Low power motion esti-
mation with probabilistic computing. In: Proc. ISVLSI. pp. 176–181. IEEE (2011)

7. Engel, M., Schmoll, F., Heinig, A., Marwedel, P.: Unreliable yet useful – reliabil-
ity annotations for data in cyber-physical systems. In: Proc. of the Workshop on
Software Language Engineering for Cyber-physical Systems. Berlin (Oct 2011)

8. Foster, J.S., Fähndrich, M., Aiken, A.: A theory of type qualifiers. In: Proc. of
PLDI. pp. 192–203. ACM, New York, NY, USA (1999)

9. George, J., Marr, B., Akgul, B., Palem, K.: Probabilistic arithmetic and energy
efficient embedded signal processing. In: Proc. of CASES. pp. 158–168. ACM (2006)

10. Gupta, A., Mandavalli, S., Mooney, V.J., Ling, K.V., Basu, A., Johan, H., Tandi-
anus, B.: Low power probabilistic floating point multiplier design. In: IEEE Com-
puter Society Annual Symposium on VLSI (ISVLSI). pp. 182–187 (2011)

11. Heinig, A., Engel, M., Schmoll, F., Marwedel, P.: Improving transient memory
fault resilience of an H.264 decoder. In: Proc. of ESTIMedia. IEEE (Oct 2010)

12. ICD e.V.: ICD-C Compiler framework, http://www.icd.de/es/icd-c/
13. Kedem, Z., Mooney, V., Muntimadugu, K., Palem, K.: An approach to energy-

error tradeoffs in approximate ripple carry adders. In: Proc. Intl. Symposium on
Low Power Electronics and Design (ISLPED). pp. 211 –216 (Aug 2011)

14. Kedem, Z., Mooney, V.J., Muntimadugu, K.K., Palem, K., Devarasetty, A., Para-
suramuni, P.D.: Optimizing energy to minimize errors in dataflow graphs using
approximate adders. In: Proc. of CASES. pp. 177–186. ACM (2010)

15. Lau, M.S.K., Ling, K.V., Bhanu, A., Mooney, V.J.: Error rate prediction for proba-
bilistic circuits with more general structures. In: Proc. of the WS on Synthesis And
System Integration of Mixed Information technologies. pp. 220–225 (Apr 2010)

16. Li, X., Yeung, D.: Application-level correctness and its impact on fault tolerance.
In: Proc. Symp. on High Performance Comp. Architecture. pp. 181–192 (2007)

17. Özer, E., Nisbet, A.P., Gregg, D.: A stochastic bitwidth estimation technique for
compact and low-power custom processors. ACM TECS 7, 34:1–34:30 (May 2008)

18. Palem, K., Chakrapani, L., Kedem, Z., Lingamneni, A., Muntimadugu, K.: Sus-
taining moore’s law in embedded computing through probabilistic and approximate
design: retrospects and prospects. In: Proc. of CASES. pp. 1–10. ACM (2009)

19. Palem, K.: Energy aware algorithm design via probabilistic computing: From al-
gorithms and models to Moore’s Law and novel (semiconductor) devices. In: Proc.
of CASES. pp. 113–116 (Sep 2003)

20. Palem, K.: Energy aware computing through probabilistic switching: A study of
limits. IEEE Trans. Computers 54(9), 1123–1137 (Sep 2005)

21. Polian, I., Becker, B., Nakasato, M., Ohtake, S., Fujiwara, H.: Low-Cost Hardening
of Image Processing Applications Against Soft Errors. In: Proc. of the Intl. Symp.
on Defect and Fault-Tolerance in VLSI Systems. pp. 274–279. IEEE (2006)

22. Pouwelse, J., Langendoen, K., Sips, H.: Dynamic voltage scaling on a low-power
microprocessor. In: Mobile Computing and Networking. pp. 251–259 (2001)

23. Sampson, A., Dietl, W., Fortuna, E., Gnanapragasam, D., Ceze, L., Grossman, D.:
EnerJ: approximate data types for safe and general low-power computation. In:
Proc. of PLDI. pp. 164–174. ACM, New York, NY, USA (2011)

24. Singh, A., Basu, A., Ling, K., Mooney, V.: Modeling multi-output filtering effects
in PCMOS. In: Symp. on VLSI Design, Automation and Test. pp. 1–4 (Apr 2011)

25. Stephenson, M., Babb, J., Amarasinghe, S.: Bitwidth analysis with application to
silicon compilation. In: Proc. of PLDI. pp. 108–120. ACM, New York, USA (2000)

