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Abstract—Software-based mitigation methods for transient
faults in embedded systems have to be extremely efficient due
to resource limitations. Thus, methods to reduce the overhead
required for error correction are highly relevant.

In this paper, we present a new approach to reduce the number
of errors that have to be corrected by incorporating information
on the use of resources. Whenever an error occurs, the error
correction subsystem is informed which activity is affected by
this error and if the affected location contains information
relevant for future execution of this activity. We achieve this by
introducing a new programming model to describe application
knowledge, the subscriber model for errors. This model allows
an application to advise the operating system about the currently
used data working set of a process and, accordingly, about the
relevance of this data.

We analyze the application of the subscriber model to the
largest data structure of a running system, the system heap.
Our evaluations show that applying our model requires only
negligible execution time overhead. In addition, we show that
using the subscriber model, the average checkpoint size for
software-based checkpointing and restore approaches can be
reduced significantly.

I. INTRODUCTION

The current trends of shrinking geometries as well as
lowering supply voltages of semiconductor devices increase
the susceptibility to transient faults [1]. Transient faults are
single-shot phenomena that can lead to unintended status
changes in components of a system. They are induced, for
example, by natural radioactive decay, high energy cosmic
particles, disturbance in supply voltages, electromagnetic in-
ferences, or overheating. Due to the stochastic characteristics
of their sources, faults affect components of a system in an
unpredictable moment in time. Fortunately, transient faults can
be corrected. They persist only until the next status change of
the affected component.

Hardware and/or software mechanisms exist which are able
to detect the occurrences of transient faults. Prominent exam-
ples for mechanisms often integrated in hardware are Parity
Bits and Error Check and Correction (ECC) to safeguard
main memory, registers, or caches. Further mechanisms can
be Double and Triple Modular Redundancy (D/TMR).

When the applied mechanism detects a transient fault which
cannot be directly corrected we assume that the fault will be
reported to the operating system. The operating system can

then handle the fault in a flexible way. As studies suggest
[2], [3], [4], not all faults have an impact on the program’s
execution. For example, a fault in main memory can affect
an unused memory cell1. Error correction for this kind of
faults can be skipped. In contrast, if faults may cause the
application to crash, e.g., due to invalid memory accesses
caused by erroneous pointer values, error correction will be
mandatory [5].

Only some faults affect the overall (software) system. The
majority of faults only affect a subset of all components. This
is an important aspect when real-time systems are considered.
If no high priority real-time activity is affected, error handling
can be delayed to increase the likeliness of keeping all
deadlines. In contrast, when a real-time activity is affected,
the fault has to be handled as soon as and as fast as possible
to continue executing the affected activity and to be able to
meet real-time constraints.

However, to determine the affected activities, the operating
system has to be able to map errors to tasks. Therefore, we
propose a subscriber-based model in this paper. Basically, the
subscriber model defines that activities have to register the
resources they intend to use. In this paper we also point out
a secondary usage of the subscriber model: optimizing the
size of checkpoints. Since we provide a fine-grained mapping
of activities to resources we are able to distinguish between
used and unused resources. By only checkpointing the used
resources, large storage space savings can be achieved.

In this paper we describe the subscriber model in detail and
evaluate our model for a real-world H.264 application. We
show significant decreases in both checkpoint sizes as well as
execution times.

The contributions of this paper are as follows:
1) We introduce a new programming model which allows

the operating system to perform a fine-grained mapping
of resources to activities and vice versa.

2) We point out how the semantics of the subscriber model
can be used to determine liveness of objects.

3) We show how the subscriber model decreases the check-
point size without the need for special hardware.

The remainder of this paper is organized as follows. We

1Unused memory cells can, e.g., be accessed due to cache line fetches.



start with presenting related work in section II. In section III
we detail the subscriber model. Evaluation results are shown
in section IV. Thereafter, we conclude in section V.

II. RELATED WORK

Keeping track of used resources is one of the main concerns
of operating system. Typically, the OS keeps a list of resources
used by a process. However, when we consider systems
with only one process consisting of several activities (like in
RTEMS [6]), this model is too coarse grained. Since address
space and resources are common to all activities of a process,
the operating system is not capable of determining the used
resources of each activity.

To the best of our knowledge, our subscriber model is the
first available method which not only provides a mapping
between activities and resources, but also on the resource’s
liveness. This enables the operating system to determine
whether a resource affected by an error is in use or not and
which activity is using the resource.

To reduce the overhead of checkpointing, several proposed
methods rely on hardware features, e.g., ”dirty” and ”ac-
cessed” bits of the page table to track modified and accessed
memory like in libckpt [7], tracking of cache accesses in the
Sequoia system [8], or page shadowing using copy-on-write
semantics in Flashback [9]. However, some architectures do
not have such features, e.g., ARM processors do not implement
dirty and accessed bits in page table entries. The subscriber
model presented in this paper is a more generic approach to
reduce the checkpoint size. In contrast to hardware-supported
methods, our method is architecture-independent and not re-
stricted to, for example, page size granularity.

III. SUBSCRIBER MODEL

As soon as a process is started by the operating system,
different resources are allocated. These consist of memory for
data (.data, .bss) and, depending on the OS, a program
stack for the initial activity. During execution, an activity
can request additional resources from the OS via appropriate
system calls. A resource is considered to be used as long as
the process is not destroyed or an activity within the process
explicitly releases the resource to the OS.

If an error is reported to the OS, the affected resources
are determined by traversing the allocation tables of the OS.
However, the affected activities cannot be determined, since
resources are only mapped to processes. In other words: When
a fault occurs, the OS will suspend all activities of all affected
processes until the error is handled. This can be problematic
when some unaffected high priority activities or real-time
activities are suspended.

To solve this problem we introduce the subscriber model.
With this model we are able to determine the affected ac-
tivities. Furthermore, we can also decide whether an affected
resource is currently in use and has live data stored.
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Fig. 1. Subscriber Model Example

A. Objects

For the subscriber model we define the term object. An
object is the representation of an arbitrary resource. For
example, when the process requests additional heap memory
by calling malloc(), a new object will be created by the OS.
This new object now exactly represents the allocated memory.
In addition to information like the allocation’s base address
and size, the object subscribers are stored as well.

An object with at least one activity subscribed is called
subscribed object. If no activity is subscribed, the object will
be called unsubscribed object.

Another type of objects are system objects. System objects
are always in the subscribed state. We introduce this object
type to support legacy code. Therefore, we also demand that
all system calls and standard library calls will produce system
objects when called through the standard interfaces. To obtain
an object which can be subscribed/unsubscribed, new inter-
faces have to be implemented. For example, the malloc()
library call always returns system objects. In this way legacy
code as well as application code will run out of the box with
our new subscriber model. To support subscribable objects, a
second interface in implemented: malloc_object().

B. The Subscriber Model

As mentioned earlier, the resource allocation list of a typical
OS contains only information on the resource state – e.g.,
allocated or not – and the processes/address spaces using
the resource. To extend this information, we employ our
subscriber model to express liveness of an object and activities
using this object. The basic idea is that only subscribed ob-
jects are ’live’. This is a very important point when handling
errors, since we do not have to handle errors in unused/not
live resources. However, this has severe consequences for the
data usage. If an activity subscribes a previously unsubscribed
object again, the activity must not make any assumptions on
the data stored in this object. This implies a new program-
ming model. Before resources can be used, they have to be
subscribed and initialized (cf. Figure 1). If an object is
used by multiple activities, each activity – even in the same
process – has to subscribe to the object. When an activity does
not need the object anymore, it can unsubscribe itself from
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Fig. 2. Subscription States of an Object
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(b) Extended live time of object
due to weak unsubscribe

Fig. 3. Producer and Consumer Problem

the object. Unsubscribe generally means that the resource is of
no interest for the activity anymore. As soon as all activities
are unsubscribed, the liveness of the object ends.

Unfortunately, this model can provoke pitfalls. Let us
assume that there is a producer P and a consumer C. To
produce an object O, P allocates memory and subscribes
the corresponding object. After finishing calculations, P adds
the object O into a buffer and unsubscribes itself from O
to produce the next object. The consumer C can now take
O from the buffer to process the data. In the meantime,
O is in an unsubscribed state which means that occurring
errors will not be corrected (cf. Figure 3a). Hence, if data is
exchanged between activities in this way, it can be corrupted
by faults. One way to cope with this problem would be to
insert extra synchronization, so that the producer has to delay
the unsubscribe call until the consumer subscribes the object.
Unfortunately, this requires either usage of semaphores or
polling status variables. In our approach we solve this problem
by introducing a third state: weak unsubscribed object (cf.
Figure 3b). Weak unsubscribing an object will be only possible
if the activity already holds a subscription. Literally, weak
unsubscribing means that data represented by the object have
no relevance for the weak unsubscribing activity anymore, but

perhaps for other (unknown) activities in the future.
In Figure 2 all subscription states are depicted. Each object

is associated with two sets S and Ŝ of subscribers tracking
the subscribing and weak unsubscribing activities, respectively.
If S contains subscribers, Ŝ will be empty and vice versa.
As can be seen, a weak unsubscribed object has exactly one
activity in Ŝ. If more than one activity is in S (|S| > 1) and
an activity performs an weak unsubscribes operation, it
will be interpreted just as normal unsubscribe call. In the
opposite case, if |Ŝ| = 1 and another activity subscribes to
the object, the weak unsubscribed activity gets unsubscribed
automatically. This behavior perfectly matches the producer
consumer problem. Before putting an object into a buffer,
the producer weak unsubscribes the object. As soon as the
consumer activity subscribes to the object, the producer gets
unsubscribed by the OS. With this methodology there are no
periods of time where vital data are unsubscribed.

To summarize, an object – and hence the resource it
represents – can be in exactly one of the following states:

1) Unsubscribed: No activity is using the resource. The
resource contains no live data.

2) Subscribed: Activities are using the resource. The re-
source contains live data.

3) Weak unsubscribed: No activity is using the resource.
The resource contains live data.

These states can directly be used in error handling. Only
those activities (which are in set S) have to be suspended
which are subscribed to the object that is affected by a fault.
If the object is unsubscribed (S as well as Ŝ are empty), no
error correction will be necessary.

C. Using the subscriber model to schedule error correction
We illustrate the advantages of the subscriber model with

the example activity set defined in Table I. All activities are
preemptive. As scheduling strategy we use Earliest Deadline
First (EDF) [10]. If two activities have the same dynamic
priority, the static priority will be used to determine the activity
to execute. The static priorities of the activities are defined as:
T1 > T2 > T3. Figure 4(a) shows the corresponding EDF
schedule without faults.



Activity Period Pi Deadline di Execution Time Ci

T1 4 4 1

T2 5 5 3

T3 40 40 3

TABLE I
EXAMPLE TASK SET
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Fig. 4. Fault Correction and Real-Time

For the remaining scenarios (b), (c), and (d) a transient fault
occurs in time slot nine. The corresponding error correction
method is assumed to take three time slots.

If no mapping of (affected) objects to activities is available,
a conservative error handling approach will be required (sce-
nario (b)). This means error correction has to be scheduled
immediately, since every activity has to be assumed to be
affected by the fault. However, this schedule leads to three
deadline misses.

The key to adhere to deadlines under fault influence is
to schedule error correction in a flexible way. Therefore, a
mapping of faulty objects to activities using that object is
mandatory. If the affected activities are known, it will be
possible to schedule the error correction method with the
maximum priority of the affected activities. Hence, higher
prioritized activities can continue execution. The subscriber
model described in this paper can be used to provide the

required mapping.
In scenario (c) only T3 is subscribed to the object(s) affected

by the fault. Hence, the error correction is scheduled with the
priority of T3. In this scenario all deadlines are kept.

An example case where two activities (T1 and T3) are
affected by an error is depicted in scenario (d). Since T2 has
the highest priority and T2 is fault-free, T2 can be scheduled
immediately. After T2 finishes execution, T1 has the highest
priority. Due to an error affecting T1, the error correction
method has to be executed first. In this scenario two deadlines
are missed. However, as can be seen at the end of time slot
20, it is possible that uninvolved activities still miss their
deadlines.

To summarize, if the knowledge of activities using faulty
objects is available, it will be possible to schedule error
correction with respect to activity priorities. The possibility to
schedule the error correction guarantees that higher prioritized
activities not affected by faults can be executed before error
correction. While this approach can reduce the amount of
deadline misses, it is not guaranteed that all activities keep
their deadlines. However, the scheduling invariant – the activ-
ity with the highest priority gets executed – is maintained all
time.

D. Checkpoint and Recovery

Checkpoint and recovery [11] is a common strategy for error
handling. Creating a checkpoint, however, can require a huge
amount of resources. On the one hand, memory is required
to store checkpoints. On the other hand, precious computation
time is used to create checkpoints. To speed up the checkpoint
creation time and to reduce the amount of data stored in the
checkpoint, a huge variety of methods exist (e.g. [7], [8], [9]).
The common idea of all such methods is to store only live data
or to store recently changed data incrementally. Unfortunately,
several methods rely on hardware features which are not
guaranteed to be supported by all architectures.

To deal with this problem methods exists which are based
on software implementations only. For example, hashes can be
calculated to detect changed data. Hash calculation, however,
typically requires a huge amount of computation time.

In this paper we propose to use our subscriber model
to reduce the amount of data to checkpoint. As mentioned
earlier, one basic mechanism to reduce the amount of data
for checkpointing is to store only live data. The subscriber
model is perfectly suited for this task, since the liveliness of
objects is directly expressed by the subscription state. Due
to the fact that only objects are assumed to be live which are
either in the subscribed state or in the weak unsubscribed state,
all unsubscribed objects can be excluded from checkpoints.
Since the subscriber model is a pure software approach, it is
applicable on any architecture.

Our subscriber model based checkpointing approach is
orthogonal to other approaches. For example, the hash based
method can be combined with the subscriber model to reduce
the memory regions which have to be hashed.



IV. EVALUATION

In this section we evaluate the overhead of the subscriber
model using a real-world application example. We also mea-
sure the amount of saved data in the checkpoint.

A. Experimental Setup

For the evaluation we simulate an embedded system with
the Synopsys CoMET simulator [12]. CoMET is a cycle-
accurate simulator supporting a large variety of processors
and periphery devices. We configured CoMET to simulate
a 1.2 GHz ARM926 system with 64 MiB RAM, and 16 MiB
ROM. The memory bus is clocked at 400 MHz. Furthermore,
we added a 640x480 pixel frame buffer device for video
output. To measure execution times on the simulator we use
the built-in timing functions measuring the simulated number
of cycles and the simulated time.

The software stack consists of our own microvisor, im-
plementing the subscriber model, and the Real-Time Execu-
tive for Multiprocessor Systems (RTEMS [6]) as guest OS.
RTEMS is a library real-time operating system supporting
different standards such as POSIX and BSD sockets. On top
of RTEMS we execute an H.264 constrained base profile
video decoder [2]. We configured our application to create
a checkpoint at each frame buffer output.

The subscribe/unsubscribe functionalities are exported as
hypercalls from our microvisor. We have para-virtualized
RTEMS and have added support for the subscriber model.
We ported our H.264 video decoder application to use the
subscriber model for all major dynamic data structures, such as
frame buffers, slice buffers, residuals, and GUI elements. All
other parts of the application as well as libraries and RTEMS
are using the legacy system object support.

B. Subscriber Model Overhead

To evaluate the overhead we use our previously described
experimental setup to decode 1,200 frames of an H.264 video
with a frame rate of 10 frames per second.

For a single subscribe operation we measure 10,700 cycles
on average, and for the unsubscribe and weak unsubscribe
operation we measured 5,800 cycles on average. With a CPU
clock of 1.2 GHz this translates into on overhead of 8.92 µs
and 4.83 µs per call, respectively. In the context of our H.264
benchmark this results in a total overhead of 0.07 %.

Another interesting question is, why there is such a big
difference between the subscribe and the (weak) unsubscribe
calls? The reason for this is that after the subscribe hypercall
RTEMS has to check whether the task has subscribed a faulty
object or not. If the subscribed object is faulty, the task will be
suspended until error correction of that object. For the check
operation, RTEMS disables IRQs and dispatching to avoid
race-conditions. These operations account for the additional
overhead.

C. Using the Subscriber Model for Optimizing Checkpoints

To evaluate the optimization potential of the subscriber
model in the context of checkpoint creation, we compare the

Avg. Checkpoint Size CPU Utilization
Normal 15.6 MB 74.5 %
Subscriber Model 4.9 MB 56.1 %

TABLE II
CHECKPOINT MEASUREMENT

execution of the H.264 video decoder with and without using
the subscriber model. Again, we use our experimental setup
with the H.264 video application decoding 1,200 frames with
a frame rate of 10 fps.

The measurement results are depicted in Table II. As can
be seen, we were able to shrink the size of a checkpoint to
one third of the original size. That is an excellent result, since
this will reduce the amount of additional resources needed for
storing checkpoints significantly. Another important observa-
tion is the decreased CPU utilization when using the subscriber
model, since less data has to be stored in the checkpoint. In our
H.264 example we decreased the CPU load by 24.7 %. Due
to this large execution time savings, the overhead introduced
by the subscriber model is more than mitigated.

V. CONCLUSIONS

The subscriber model has big advantages. Due to subscribed
objects, activities using a faulty object can be easily deter-
mined during runtime.

To handle errors in software, it is very important to map
errors to the activities which are affected by the errors. This
is a basic requirement to build a flexible error handling system
for real-time systems. If an object is affected by a fault, the
related activities can be interrupted until the fault is handled.
This enables unaffected high priority activities to continue
execution. In this paper we presented the subscriber model
which fulfills this requirement. We showed that the subscriber
model induces only a small runtime overhead.

By interpreting the subscriber state as liveness information
we are furthermore able to use the subscriber model to
optimize the checkpoint size. For the used H.264 benchmark
we are able to achieve savings in processor load of 24.7 % and
to shrink the checkpoint size to one third.

The next step is to combine the subscriber model with the
reliable and unreliable data model presented in [13].
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