FAME: Flexible Real-Time Aware Error Correction
by Combining Application Knowledge and
Run-Time Information

A. Heinig, F. Schmoll, B. Bonninghoff, P. Marwedel, M. Engel
Computer Science 12
TU Dortmund
D-44221 Dortmund, Germany
Email: {firstname.lastname} @tu-dortmund.de

Abstract—In this paper, we present FAME (Fault-Aware Mi-
crovisor Ecosystem): an ecosystem which exploits flexibility in
software implemented fault tolerance to significantly reduce
error handling overhead. Combining both offline and online
information FAME can decide how to handle errors appropri-
ately. Static code analysis methods provide application knowledge
about possible error impacts. During runtime, data liveness and
resource mapping are determined by a fine-grained resource
usage model. Using our approach, we achieve flexible real-
time aware error handling that enables the use of the system
even under high error rates. Compared to a simple checkpoint-
recovery approach the number of deadline misses are reduced
significantly by up to 87.37 %.

I. INTRODUCTION

Resilience against transient faults was traditionally only
a concern for computer systems running in harsh environ-
ments or in fields where failures can lead to severe damages.
Transient faults are single-shot phenomena that can lead to
unintended status changes in various components of a system.
Natural radioactive decay, disturbance in supply voltages,
high energy cosmic particles, or overheating are examples
for causes of transient faults. Due to advancements of semi-
conductor fabrication that lead to shrinking geometries and
lowered supply voltages of semiconductor devices, transient
fault rates will increase significantly for future semiconductor
generations [1]. Hence, resilience against transient faults will
become an issue also for everyday computing.

To cope with transient faults, error detection and correction
(EDAC) will be mandatory. Fortunately, a variety of such
methods already exists. However, EDAC is not free. Typically,
additional resources are required for the implementation. This
is a serious problem, especially in embedded systems devel-
opment. On the one hand, transient faults have to be handled,
and on the other hand, embedded systems possess only a
limited number of resources, like processing time, memory,
and energy. If every single fault is corrected, maintaining real-
time properties of a system will become extremely hard.

In this paper, FAME, the Fault-Aware Microvisor Ecosystem,
is presented. FAME implements a flexible error handling
approach which is able to decide if, when, and how an error
has to be corrected. The flexible error handling approach

allows us to ignore errors if, for example, unused memory
is affected. Access to unused memory can happen, if a cache
fetches a new line, but, due to data alignment, memory is
fetched which resides between two allocated data objects. In
the opposite case, if errors can lead to a program crash, error
correction will be mandatory. Examples for those kinds of
errors are faults which lead to erroneous pointers, arithmetical
exceptions, or control flow changes.

We focus this paper on the error correction aspect. Hence,
we assume that an error detection method is present, like,
e.g. Reed-Solomon codes [2]. In this paper, we will show
improvement of the real-time behavior of the used benchmark
application.

The contributions of this paper are as follows:

1) We show a flexible error handling approach for embed-
ded real-time systems.

2) We combine compile time and runtime information to
decide if, how, and when errors have to be handled.

3) By applying the proposed techniques, the number of
deadline misses is reduced significantly.

The paper is organized as follows. Related work is presented in
section II. In Section III, flexible error handling is introduced
followed by a description of the realization with FAME in Sec-
tion IV. Evaluation is presented in Section V. In Section VI,
we conclude the paper.

II. RELATED WORK

Fault tolerance methods are based on some kind of redun-
dancy. Typically, a larger amount of redundant resources al-
lows correcting a higher number of errors. Several approaches
[3], [4], [5], and [6] trade-off reliability against resource
consumption by applying error protection or detection to only
a part of the application’s data. The data that is protected is
determined using profiling or heuristics.

The annotation of precision requirements of data in Java
programs using type qualifiers is presented in [7]. Data an-
notated with the type qualifier @Approx can tolerate in-
accuracies and can be processed by approximate hardware
components to save energy. However, the determination of

approximate data is not automated and inaccuracies due to
transient faults are not considered.

To detect multi bit errors and errors in the control flow, TMR
(Triple Modular Redundancy) can be used. If errors only have
to be detected, DMR (Dual Modular Redundancy) is sufficient.
DMR ~only” doubles the amount of required resources. Soft-
ware based approaches to detect errors are, for example, EDDI
[8] and SWIFT [9] which duplicate instructions important
for branching and memory transactions. By comparing the
results errors can be detected. In contrast to software-based
approaches, all hardware-based approaches require hardware
modifications or additional hardware components. Software-
only methods can be executed on existing hardware.

Typically, error detection only approaches require less re-
dundant resources than approaches including error correction.
As mentioned earlier, we focus on error correction. For the
rest of this paper we assume that at least one of the previously
described error detection methods is available.

A framework that allows the specification of application
specific error correction actions is presented by de Kruijf
et al. [10]. They extent C/C++ by relax and recover
blocks similar to try-catch blocks for exception handling.
A recover block contains the actions to be taken if the
rate of errors occurring during the execution of the preceding
relax block exceeds a specified limit. In contrast to our
approach this a code-centric approach. Also, code not included
in a relax block is assumed to experience no faults.

Support for reliability in operating systems is often closely
related to security concerns. One important development in
this direction is the EROS system [11] and its follow-up
project, Coyotos. EROS provides support to efficiently restruc-
ture critical applications into small communicating compo-
nents. These components can then be efficiently isolated from
each other and the rest of the system. Access to objects is
controlled by capabilities. From our point of view, capabilities
can be seen as an orthogonal approach to the subscription-
based model of data object ownership used in our paper.

The idea of providing only a minimal layer of abstractions
was investigated in the Exokernel project [12]. This enables
software running on top of exokernels to have a greater level of
control on the use of hardware abstractions. The functionality
of exokernels is limited to protection and multiplexing of
resources. In a sense, the operating system of our FAME
approach can be seen as a kind of specialized exokernel which
provides only those abstractions required for building fault-
tolerant applications on top of it, while leaving other crucial
resource allocation decisions such as scheduling and memory
management to the library OS running on top of it.

III. FLEXIBLE ERROR HANDLING

The idea of flexible error handling is shown in Figure 1.
In the depicted scenarios, an application is running and at
some point in time an error occurs. In a naive approach every
error would be handled alike, without considering the available
resources. This can lead to deadline misses.

Deadline
Naive . .
Approach Runmng![Recovery Running
t
Recovery — Running
2 o« .
Flexible . R™ ~|Running
Approach Running — C 3 -
PP Running |-~ Recovery
S Running

Fig. 1. Flexible Error Handling

In our approach, the error is classified first, labeled as ”C”.
The goal of the classification is to determine if, how, and
when the error has to be corrected.

(if) Whether errors have to be handled or not depends
mainly on the error impact. If an error has a high impact,
error correction will be mandatory. In contrast, if an error
has only low impact at all, e.g. the color of a single pixel
in the frame buffer is disturbed, further handling is optional.
Handling errors in the latter case will, however, improve the
quality of service (QoS). To distinguish errors by their impact,
static code analysis methods are used, which are detailed later.

(how) Error handling depends on the available error cor-
rection methods, the error impact, and the available resources.
In our FAME system the correction methods “checkpoint-and-
recovery” and “ignore” are always available. “Ignore” is the
empty recovery method (case 4 in Figure 1). In addition to
these two methods, the application programmer can provide
further error correction methods. Such a method (labeled
as “R*” in Figure 1) can be, for example, faster as the
recovery of a checkpoint which increases the probability that
the application adheres to the deadline.

(when) The scheduling algorithm has major influence on the
question when an error correction method should be scheduled.
Typically, the task with the highest priority is executed. Hence,
if a high priority task is affected, error correction has to be
scheduled immediately (cases 1 and 2). If a low priority task
is affected, the high priority task can continue execution and
the error handling will be delayed (case 3). To be able to map
errors to tasks, a subscriber-based model will be used.

By considering if, how, and when an error has to be
corrected, our flexible error handling approach can select an
error handling method which is suited for the current situation.
In the worst case, we have to immediately schedule the same
error correction method as in the naive approach. Compared
to the naive approach, this results in an additional overhead
caused by the classification phase. In the best case, however,
flexible error handling can completely ignore the error and
hence save resources and adhere to the deadline.

IV. FAME

To enable flexible error handling application knowledge
gathered off-line has to be incorporated with data only avail-
able at runtime. Therefore, we use a special compiler that
collects information about error handling options. It encodes
this information in a classification data base. The runtime
components of FAME can efficiently extract the error handling

Runtime

Annotated
Source Code

v
Compiler
(REPAIR)

Error
Correction

t
Operating
System

Compile time

Executable

— ~~

_—

Classification

Fig. 2. FAME - Fault-Aware Microvisor Ecosystem

Listing 1. Annotated Corretion Method
| #pragma eca gos=... wcet=...
2 void MoCompDefaultValue(...) {
3 int offset = fault2offset(...);
4 mpi->MVx[offset] = 0;
5 mpi->MVy[offset] = 0;
6}

Listing 2. Corretion Method Assigned to Data
mode_pred_info_t x mpi = (mode_pred_info_t x)
malloc (sizeof (mode_pred_info_t));
mpi->MVx = (reliable int x)
#pragma eca ecm = MoCompDefaultValue;
malloc(x x y % sizeof(int));

[T ST -

information from this classification and select and schedule the
error correction that is most suitable under the current runtime
conditions. The resulting ecosystem is depicted in Figure 2.

A. Compile-Time Classification of Application Data

During compile-time the application’s source code is ana-
lyzed to determine error correction options for the individual
data objects of the application. The source code can contain
two kinds of annotations with that the application programmer
can express application knowledge: Reliability type qualifiers
and error correction annotations.

The type qualifiers reliable and unreliable classify,
whether data has to be corrected if it is affected by an error.
Reliable data are expected to be error free, otherwise the
system may crash. Hence, if an error affects reliable data, error
correction will be mandatory. Our REPAIR (Reliable Error
Propagation And Impact Restricting) compiler, a compiler for
ANSI C99, can automatically classify data as reliable based
on its use in the application and insert the type qualifiers
into the application’s source code [13]. Hence, reliability type
qualifiers need not be contained in the initial application’s
source code.

If reliable data affected by errors are always corrected,
REPAIR guarantees the correct control flow of the application
without system crashes by static analysis. Data classified as
unreliable need not to be corrected, but uncorrected errors can
lead to huge deviations in the application’s output. To limit the
influence of errors on the output, the application programmer
can also annotate additional data as reliable that should always
be corrected. Thus, the propagation of errors to these data is
inhibited as well.

With error correction annotations (eca) custom error cor-
rection methods (ecm) can be specified. In Listing 1, the
function MoCompDefaultValue is tagged as error correc-

Application
Guest OS
FAMERE

2 Microvisor

Fig. 3. Software Stack

tion method. The purpose of this correction method is to
correct corrupted data by assigning a default value. In this
way, consequences like a system crash can be prevented, but
a costly recovery of the fault free value can be avoided. To
assign this correction to the actual data object, the annotation
depicted in Listing 2 has to be used.

After the classification of data and parsing of the error
correction annotations, the compiler integrates the information
into the binary. Using a runtime error classification library,
position, size, and reliability class of static data objects as
well as possible correction methods can be queried.

B. Runtime Components

Figure 3 gives an overview of the runtime components.
An application with integrated classification information is
running on a virtualized guest OS. The guest OS is linked
against the FAME Runtime Environment (FAMERE). FAMERE
is responsible for the flexible error handling as well as the
interfacing with the microvisor. The microvisor runs low-level
error correction and ensures the feasibility of software-based
error handling. In the next subsections, the aspects of the
runtime system that are important for the implementation of
flexible error handling are described in more detail.

1) Microvisor: Our flexible error handling strategy is based
on a custom microvisor. The main purpose of the microvi-
sor is to isolate critical system components from possible
error propagation. Critical components in this context are
resources required to keep error detection and correction
running. Depending on the underlying hardware, the actual
critical resources vary. If, for example, errors are signaled via
interrupts, the interrupt controller will be part of the critical
resources set.

The microvisor itself is also part of the critical resources
set. Like in all software-based fault-tolerance mechanisms, this
is a weak spot, since the microvisor cannot protect itself. If
software parts critical for error handling are susceptible to
errors as well, situations will occur where the error handling
has to cope with errors affecting the error handling itself. This
can result in a livelock. To deal with this problem, some guar-
anteed fault free hardware components are required to execute
software-based fault-tolerance mechanisms. Those fault free
hardware components and the microvisor form a minimal set,
the so called Reliable Computing Base (RCB) [14]. To shield
the RCB from error propagation, our microvisor uses para-
virtualization. Compared to other virtualization solutions, our
microvisor is tailored to the needs of embedded systems and
fault tolerance. To keep the virtualization overhead low, our
microvisor supports only one guest operating system during

[Application

Vs

Error Schedule
JEror .
Handled error correction

f

Select correction
method

!

Online Error PR
classification o

Schedule
classification

t

3
<] Determine and suspend
% Guest OS/ affected task(s) |
& |FAMERE 7 PC
S\ Type
,,, Location |........
~>| Seq.-No.
g e Error Context
§ Handled
n ; Create error description
Checkpoint restore -
& = and switch to FAMERE

YN

Error
handleable by
FAMERE
?

t

Microvisor
Error detection

Fig. 4. FAME Error Handling Procedure

runtime. In contrast to other hypervisors, this releases us from
the burden to provide virtual CPUs and CPU multiplexing.
Also, caches and TLB entries need not to be switched between
different OS instances.

A further responsibility of the microvisor is the creation of
full system checkpoints. Consequently, the microvisor will be
able to restore a valid state if the system is in an odd state
due to a severe error. This will be the case if the error affects
the error handling in FAMERE.

2) FAMERE: FAMERE is a library embedded in the guest
operating system. FAMERE is the component where all in-
formation — compile time as well as runtime — is combined
to implement our flexible error handling approach. However,
the task of FAMERE is not only to handle errors. In addition,
FAMERE provides support for other aspects related to virtu-
alization and reliability. Among others, this includes a high
level API enabling C code to directly call hypercalls and to
replace the guest OS’ heap allocator by a version supporting
(un-)reliable data annotations.

However, by far the most important task of FAMERE is error
handling. The complete error handling procedure is depicted
in Figure 4. Error handling starts in the microvisor (bottom
of Figure 4). After error detection, the microvisor first checks
whether the fault can be handled outside the RCB or not.

Errors, for example, which affect FAMERE are very unlikely
to be handled by FAMERE itself — again, this is the previously
described chicken-and-egg problem. In such a case the micro-
visor automatically restores the last system checkpoint or, if
no checkpoints are available, resets the complete user space
as a last resort. If FAMERE is not affected, error handling is
delegated by sending a message to FAMERE. Before jumping
to the FAMERE message handler, the microvisor creates an
error description containing information about the occurred
error as well as the user space context.

After switching to FAMERE, the tasks affected by the error
have to be determined. To get a very fine-grained mapping,
the subscriber model introduced by Heinig et. al [15] is used.
Briefly, the subscriber model defines a new programming
paradigm where tasks have to explicitly subscribe to data
prior usage. After usage, tasks can unsubscribe from the
data. Hence, each data object possesses a set of tasks currently
using this object. If the set is empty, the subscriber model
defines that the information stored in the object is not life. In
the sense of our flexible error handling strategy, this means
that fault affecting such objects can be ignored.

If there are tasks that are not affected by the fault and
that are higher prioritized than the affected tasks, further error
handling will be delayed until all higher prioritized tasks finish
their execution. When the error handling is scheduled again,
the online error classification will be performed. It determines
possible correction scenarios based on the occurred errors and
the classification data provided by the compiler.

The last steps of the flexible error handling procedure are
to select one scenario and to schedule this scenario. For the
selection, the current runtime conditions are considered. This
includes, for example, the currently available slack. The slack
time denotes the time which is not used by any real-time task.
In this period of time, error correction as well as checkpointing
can be performed without disturbing the real-time behavior of
the application.

V. EVALUATION
A. Experimental Setup

For the evaluation, we simulate an embedded system with
the Synopsys CoMET cycle-accurate simulator [16]. In all
experiments CoMET is configured to simulate an 1.2 GHz
ARM926 system with 64 MiB RAM, 16 MiB ROM and
128 KiB reliable RAM. All components are considered reli-
able, except the 64 MiB of RAM.

As software load we execute an H.264 constrained baseline
profile video decoder. The decoder is configured to create a
checkpoint after every displayed frame. In all our experiments,
we decode 600 frames in total at a rate of 10 frames per
second. The frame resolution is 480x320 pixels. Although
resolution and frame rate seem quite low, this setup leads
to a CPU utilization of more than 65 %, since we decode
H.264 in software only. However, higher resolutions and frame
rates will be possible if more computing power is available.
We are convinced that our results will also be valid for such
platforms. To reduce jitter in the output, our H.264 decoder

Error Rate ‘ Naive Error Handling ‘

Avg. Deadline Miss

Flexible + Application Specific

Flexible Error Handling
Avg. Deadline Miss ‘ Avg Missed by

‘ Avg Missed by

A ‘ Effective [s™1] | # Avg. Deadline Miss ‘ Avg Missed by
A=le-16 0.14 0.00 0.00 ms
A=le-15 1.44 2.86 8.15ms
A=le-14 35.84 - -

0.00 0.00 ms 0.00 0.00 ms
0.52 7.93 ms 0.36 4.89 ms
1,937.87 10,268.98 ms 1,887.12 9,346.16 ms

TABLE I
AVERAGE DEADLINE MISSES

buffers eight frames. Each buffer element is decoded in a
separate task and the inter-frame dependencies are modeled
by task dependencies. EDF* [17], [18] is used to schedule
the tasks. Therefore, we extended RTEMS to support task
dependencies as well as task activation time.

A simulation of one complete decoder run takes normally
20 minutes on an Intel(R) Xeon(R) E5630 CPU clocked at
2.53 GHz. Every run which takes longer than 2 hours is
automatically terminated, since such a run is very likely to
violate any real-time constraint due to numerous checkpoint
restores. The microvisor is configured to allow a maximum
of eight restores per checkpoint. Hence, if FAMERE requests
to restore the same checkpoint the ninth time, the checkpoint
will be dropped and the previous checkpoint will be restored.
If a system reset is necessary, since no more checkpoints are
available, the run will be terminated as well.

B. Fault Injection

To evaluate the real-time behavior under influence of tran-
sient faults, we implemented our own CoMET memory mod-
ule which injects uniformly distributed transient faults. For
each memory access, we simulate error detection in hardware.
If the processor accesses an erroneous word, an interrupt will
be raised. The number of faults to be injected is determined
by a Poisson distribution with configurable parameter A\. We
use three different parameters A. Not all injected faults are
visible by the application, since faults are only detected when
the corresponding memory cell is accessed. In the first two
columns of table I, the observed average error rates (of
detected faults) are depicted. As can be seen, our injection
rates range from several faults per minute to an artificially
high fault rate of 36 faults per second.

C. Naive Error Handling

In this scenario, the microvisor treats every error as error
which cannot be handled by FAMERE. Hence, a checkpoint
is immediately restored. For this scenario, columns three and
four in Table I show the average amount of missed deadline
and the average duration of a deadline miss, respectively. For
the lowest error rate, no deadline misses occur since enough
slack time is available for the recovery of checkpoints.

If the error rate increases by an order of magnitude, deadline
misses can be observed. On average, deadlines are missed by
8.15ms. Considering the highest error rate, it can be noticed
that no run of the experiment terminates within the two hour
time limit or without resets initiated by the microvisor.

D. Flexible Error Handling

In Table I columns five and six, results for flexible error
handling are shown. In this experiment, only errors affecting

reliable and alive data are handled by checkpoint recovery.
Errors affecting other data are ignored.

As can be seen, the flexible error handling approach reduces
the number of deadline misses significantly (81.75 %). Alike,
the time by which a deadline is missed is reduced as well
(2.70 %). However, most importantly, flexible error handling
allows for very high error rates. The number of missed
deadlines is, unfortunately, very high but, according to our
simulation statistics, more than 50 % of all runs terminated
within the two hour time limit without reset.

E. Flexible Error Handling with Application Specific Error
Correction Methods

In our last experiment we use the annotations shown in
Listing 1 and 2 to enable the application specific error correc-
tion method MoCompDefaultValue. This method is able
to transfer a corrupted motion vector into a valid state. In
H.264 motion vectors are used to shift a macro block to a
new location within a frame. Motion vectors are hence well
suited to encode movements in the video. However, if a motion
vector is corrupted, it can happen that the corresponding macro
block gets shifted out of the frame. Hereby, other memory
will be overwritten. Consequently, motion vectors have to be
reliable. Anyway, if a motion vector moves the corresponding
macro block only to a location inside the frame, no fatal con-
sequences will happen. Therefore, MoCompDefaultValue
provides a valid correction method by just setting the motion
vector to zero. This corresponds to no movement of the macro
block. By applying this application specific error correction
method to erroneous motion vectors, the deadline misses are
reduced by 87.37 % for the second highest error rate.

In Figure 5, we evaluate the ratio between errors which
can be ignored, errors which require checkpoint restore, and
errors which can be handled by MoCompDefaultValue.
The bars are normalized for better comparison. It is clearly
shown that over 56 % and up to 63 % of all transient faults
can be ignored. For the flexible error handling experiment with
enabled application specific error correction, it can be observed
that, with higher error rates, the share of errors correctable with
our application specific method is increasing.

For the highest error rate, more than 5.5 % of all errors can
be corrected by MoCompDefaultValue. Or in other words,
the amount of required checkpoint restores is reduced by over
5.5%. This leads to the conclusion that it is worthwhile to
write application specific error corrections methods.

F. Quality of Service Impact

Setting the motion vector to zero and ignoring of faults
affecting only unreliable data has no impact on the control

Flexible Error Handling

Flexible + Application Specific

100% -

% -
5% Correction

Ignore

50% -

Restore

Motion Vector
Default Value
25% -

0% -

Fig. 5. Applied Error Correction Methods
A=le-16 | A=le-15 | A=le-14
Naive Handling 36.19 36.15 -
Flexible Error Handling 36.19 36.18 29.01
Flexible + Application Specific 36.20 36.12 28.95

TABLE II
PEAK SIGNAL TO NOISE RATIO

flow of the application. However, it will definitively have an
impact on the quality of service (QoS). Table II shows the
measured peak signal to noise ratio (PSNR) of the different
scenarios. The PSNR is a typical QoS metric used in image
processing. The higher the PSNR, the better the QoS. To obtain
the PSNR we compare the decoded frames with the original
source images used to create the video. The average PSNR
ratio achieved by a golden run is 36.20 dB. As expected, higher
fault rates lead to lower PSNR.

Although no errors are ignored during the naive error
handling approach, the PSNR decreases. The reason for it is
that we use an optimized checkpointing which ignores data
which is classified as unreliable. For the highest error rate,
significant QoS deviations can be observed. Due to the fact
that MoCompDefaultValue corrects errors not exactly, the
deviation of flexible error handling with application specific
correction has a higher deviation as without application spe-
cific correction.

VI. CONCLUSIONS

In this paper, we presented FAME, an ecosystem which
combines compile time and runtime information to enable
a flexible error handling strategy. To save scarce resources,
especially in embedded real-time systems, our flexible error
handling strategy determines if, how, and when errors have
to be corrected. By applying our flexible approach we showed
that up to 63 % off all errors can be safely ignored in our
H.264 video decoding application. Our techniques improved
the real-time behavior of the application under influence of
transient faults. We showed the reduction of deadline misses
by up to 87.37 % compared to an approach where every error
is handled immediately without classification. Furthermore,
flexible error handling allows coping with high error rates.
Even if a deadline is missed, the difference to the original
deadline is very small. Reductions by up to 40 % are shown.

The next step to improve FAME will be to implement more
application specific error correction methods. Furthermore,
other applications have to be considered as well.

ACKNOWLEDGMENTS
This work was supported by the German Research Foun-
dation (DFG) Priority Programme SPP1500 under grant no.
MA-943/10. The authors would also like to thank Synopsys
for the provision of the CoMET simulation framework.

REFERENCES
[1] “Process Integration, Devices, and Structures (PIDS),”
International Technology Roadmap for Semiconductors, 2013,

http://www.itrs.net/Links/2013ITRS/Home2013.htm.

[2] 1. S. Reed and G. Solomon, “Polynomial Codes Over Certain Finite
Fields,” Journal of the Society for Industrial and Applied Mathematics,
vol. &, no. 2, pp. 300-304, Jun. 1960.

[3] K. Lee, A. Shrivastava, I. Issenin, N. Dutt, and N. Venkatasubramanian,
“Mitigating soft error failures for multimedia applications by selective
data protection,” in CASES ’06, Oct. 2006, pp. 411-420.

[4] M. Mehrara and T. Austin, “Exploiting selective placement for low-cost
memory protection,” ACM Trans. Archit. Code Optim., vol. 5, no. 3, pp.
14:1-14:24, Dec. 2008.

[5] K. Pattabiraman, Z. Kalbarczyk, and R. Iyer, “Application-based metrics
for strategic placement of detectors,” in Dependable Computing, 2005.
Proceedings. 11th Pacific Rim International Symposium on, Dec. 2005.

[6] Q. Lu, K. Pattabiraman, M. Gupta, and J. Rivers, “SDCTune: A Model
for Predicting the SDC Proneness of an Application for Configurable
Protection,” in ESWEEK’14, Oct. 2014.

[71 A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “Ener]: approximate data types for safe and general low-
power computation,” in Proc. of PLDI, Jun. 2011.

[8] N. Oh, P. Shirvani, and E. McCluskey, “Error detection by duplicated
instructions in super-scalar processors,” Trans. on Reliability, vol. 51,
2002.

[91 G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. 1. August,

“SWIFT: Software Implemented Fault Tolerance,” in Code generation

and optimization (CGO), Mar. 2005.

M. de Kruijf, S. Nomura, and K. Sankaralingam, “Relax: An Architec-

tural Framework for Software Recovery of Hardware Faults,” in ISCA

’10, June 2010, pp. 497-508.

J. S. Shapiro, J. M. Smith, and D. J. Farber, “EROS: a fast capability

system,” in Proceedings of the seventeenth ACM symposium on Oper-

ating systems principles (SOSP), Dec. 1999, pp. 170-185.

D. Engler, F. Kaashoek, and J. O’Toole, “Exokernel: an operating system

architecture for application-level resource management,” in Operating

systems principles (SOSP). ACM, Dec. 1995, pp. 251-266.

F. Schmoll, A. Heinig, P. Marwedel, and M. Engel, “Improving the fault

resilience of an H.264 decoder using static analysis methods,” Trans. on

Embedded Computing Systems (TECS), vol. 13, Nov. 2013.

M. Engel and B. Débel, “The Reliable Computing Base-A Paradigm for

Software-based Reliability.” in SOBRES’12, 2012.

A. Heinig, F. Schmoll, P. Marwedel, and M. Engel, “Who’s using that

memory? A subscriber model for mapping errors to tasks,” in Silicon

Errors in Logic - System Effects (SELSE), 2014.

Synopsys Corporation. (2014, Feb.) COMET/METeor Models. [Online].

Available: http://www.synopsys.com/Systems/VirtualPrototyping/

VPModels/Pages/CoMET-METeor.aspx

J. Blazewicz, Scheduling Dependent Tasks with Different Arrival Times

to Meet Deadlines. North-Holland Publishing Co., Oct. 1976.

H. Chetto, M. Silly, and T. Bouchentouf, “Dynamic scheduling of

real-time tasks under precedence constraints,” The Journal Real-Time

Systems, vol. 2, no. 3, pp. 181-194, 1990.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

